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Abstract. Satisfiability Modulo Theories (SMT) solvers are fundamen-
tal tools for program analysis and verification. The satisfiability problem
for first-order logic is undecidable. In practice, SMT solvers typically
employ various heuristics and are inherently incomplete. Solvers return
unknown if they cannot solve a particular formula. The unknown results
drastically hinder the usability of SMT solvers and directly affect client
applications. The standard way to reduce unknown cases is to develop
more powerful solvers, which requires significant algorithmic and engi-
neering efforts.
This work-in-progress paper discusses a new perspective on improving
SMT solving: instead of developing more powerful solvers for all for-
mulas, we focus on mutating “hard” formulas (unknown formulas) to
make them “easier” to solve. That gives us enormous flexibility to pro-
cess unknown formulas without affecting normal formulas. Specifically,
given an unknown formula and a solver, we propose to repeatedly modify
the formula via structural mutations. Our key insights are (1) structural
mutations make formulas smaller so that they are presumably easier to
reason about, and (2) structural mutations approximate formulas so that
we can reason about the original formulas indirectly. Then, we utilize the
same solver to solve the mutated formulas to retrieve the sat/unsat re-
sults of the original unknown formulas.

1 Introduction

Satisfiability Modulo Theories (SMT) is a powerful formulation that can express
many problems arising in symbolic execution [12,30], formal verification [7,23],
program synthesis [19], etc. An SMT problem instance describes a first-order
logic formula with respect to certain background theories. SMT solvers are soft-
ware tools for deciding the satisfiability of SMT formulas. Z3 [25] and CVC4 [5]
(now succeeded by CVC5 [3]) are two widely used SMT solvers. However, it is
well-known that the satisfiability problem for first-order logic is undecidable. In
addition to theoretical restrictions, modern SMT solvers also face practical is-
sues, including incomplete implementations and resource limits. Therefore, prac-
tical SMT solvers return unknown results for formulas that they cannot solve.
In the popular Satisfiability Modulo Theories Competition (SMT-COMP), in
many tracks, a solver receives a zero “correctly solved score” if the check-sat
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command returns unknown [4]. In practice, SMT solvers strive to offer best-effort
answers by solving as many formulas as possible.

The standard way to reduce unknown cases is by improving solvers, including
developing new algorithms and engineering better solvers. That is challenging
and time-consuming due to both the theoretical hardness of SMT solving and the
implementation issues of such complex systems. For example, CVC4’s bitvector
rewriting rules contain more than 3.5K source lines of code [32]. From users’
perspective, it is possible to try solvers’ available options or tactics, or even
different solvers to handle unknown cases, but there are usually a limited number
of choices at a given time.

We consider a source-level approach for improving SMT solving. Rather than
developing more powerful solvers for all formulas, we focus on “hard” formulas
for which solvers return unknown. Working directly on unknown formulas enables
unique opportunities for employing solver-agnostic source-to-source transforma-
tions to make “hard” formulas easier to solve. Specifically, given an unknown
formula ϕ for a specific solver, we propose a technique called structural muta-
tions to perform lightweight rewriting on ϕ and obtain a mutated formula ϕ′.
Then we apply the same solver on ϕ′ to reason about ϕ indirectly. There are two
key observations that underlie structural mutations:

– Small formulas are easier to solve. In general, smaller cases have simpler
structures and are presumably easier to reason about. A similar observa-
tion exists in compiler testing, where developers strongly encourage sub-
mitting small, reproducible test programs because it is easier to manually
inspect small test cases [36]. Indeed, well-known production compilers such
as GCC and LLVM always advocate test reduction [31] in bug reporting
processes [17,24]. Following the same observation, our structural mutations
produce smaller formulas that are generally “simpler” to solve.

– Approximations enable indirect reasoning of formulas.Approximations, which
are used in many SMT solving techniques [8,11,20], enables indirect reason-
ing of formulas. By mutating the original formula, our technique can either
over- or under-approximate the original unknown formula. For example, we
can perform a structural mutation by deleting a top-level conjunct, which
relaxes the original unknown formula and provides an over-approximation.
If the over-approximated formula is unsat, the origin formula must be unsat.
Figure 1 describes the rationale for retrieving unknown formulas via over-
and under-approximations.

2 Motivating Examples

This section gives two motivating examples of reasoning about unknown formulas
via structural mutations.

Figure 2 gives a formula [2] in the LIA (Linear Integer Arithmetic) category of
the SMT-LIB benchmarks. Z3 1 reports unknown on the original formula in Figure 2

1 We use commit 11477f1 (December 16, 2020) for Z3.
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Fig. 1: Satisfiability relations between the original formula ϕ, the under-
approximated version ϕunder, and the over-approximated version ϕover. Arrows
in the figure represent implication relations.

due to incomplete quantifiers. We mutate the original formula by deleting the
third assertion (lines 15-20, inclusive). With fewer assertions, we clearly have
obtained a “relaxed” version of the original formula. Z3 can successfully report
unsat on our over-approximated formula. Therefore, we can conclude that the
original formula is unsatisfiable because even the over-approximated formula is
unsatisfiable (the “←” direction in Figure 1).

Figure 3 gives a formula [1] in the AUFLIA (Arrays, Uninterpreted Func-
tions, and Linear Integer Arithmetic) category of the popular SMT-LIB bench-
marks. CVC4 2 reports unknown on the original formula in Figure 3a because
the solver is incomplete in this case. We mutate the original formula by instan-
tiating the free variable n (line 3) to the constant 0. Clearly, this is an under-
approximation because it restricts the value of n. CVC4 can successfully solve the
under-approximated formula and return sat. Because the under-approximated
version is satisfiable, it implies that the original formula is satisfiable (the “→”
direction in Figure 1). Moreover, CVC4 can generate a model in Figure 3b for
the under-approximated formula. The model assigns false and 0 to the uninter-
preted functions f and v, respectively. It is straightforward that appending n =

0 to the model gives us a model of the original formula, because if we evaluate
the formula on this model, the assertion becomes “there does not exist an x such
that 1 ≤ x ≤ 0 and . . . ”, which is clearly true.

3 Structural Mutations

SMT formulas are first-order logic formulas with respect to different background
theories. A theory over a signatureΣ could be defined as a set I of interpretations
for Σ, and I is also called the models of T . Under a background theory T , we
use ϕ(x⃗) to represent a SMT formula with free variables x⃗ as a vector. ϕ(x⃗) is
satisfiable if and only if there exists a model of T in which ϕ(x⃗) evaluates to
true. Otherwise, the formula is unsatisfiable. In practice, a model M of ϕ(x⃗)
usually refers to a function that maps each free variable in x⃗ to a value of the
corresponding sort, such that ϕ(x⃗) evaluates to true under this assignment and
the corresponding theory. We adopt this function-mapping view of models in

2 We use commit 80e0246 (December 16, 2020) for CVC4.
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1 (set-logic LIA)
2 (declare-fun ~a29~0 () Int)
3 (assert (not (exists (( v_prenex_81 Int))
4 (let ((. cse0 (* 4 (div v_prenex_81 5))))
5 (and (<= 0 (+ .cse0 4)) (<= 0 .cse0)
6 (<= ~a29~0 (+ (mod .cse0 299978) 300021))
7 (= 0 (mod v_prenex_81 5)))))))
8 (assert (not (exists ((v_~a29~0_1039 Int))
9 (let ((. cse1 (* 4 (div v_~a29~0 _1039 5))))

10 (let ((. cse0 (mod .cse1 299978)))
11 (and (= 0 (mod v_~a29~0 _1039 5))
12 (not (= 0 .cse0)) (< .cse1 0)
13 (<= ~a29~0 (+ .cse0 43))
14 (= (mod (+ .cse1 4) 299978) 0)))))))
15 (assert (not (exists (( v_prenex_81 Int))
16 (let ((. cse2 (* 4 (div v_prenex_81 5))))
17 (let ((. cse1 (+ .cse2 4))(. cse0 (mod .cse2 299978)))
18 (and (<= ~a29~0 (+ .cse0 300021))
19 (< .cse1 0) (not (= (mod .cse1 299978) 0))
20 (= 0 .cse0) (= 0 (mod v_prenex_81 5))))))))
21 (assert (exists (( v_prenex_81 Int))
22 (let ((. cse0 (* 4 (div v_prenex_81 5))))
23 (and (<= 0 (+ .cse0 4)) (<= 0 v_prenex_81) (<= 0 .cse0)
24 (<= ~a29~0 (+ (mod .cse0 299978) 300021))))))
25 (check-sat)
26 (exit)

Fig. 2: An over-approximation example for Z3, where the over-approximation is
realized by removing the third assertion (line 15-20, inclusive).

later sections. Moreover, we assume a fixed background theory T over a signature
Σ. Let FΣ be the set of formulas over Σ.

Definition 1 (Structural Mutations). A structural mutation M is a func-
tion from FΣ to FΣ such that for each ϕ ∈ FΣ,M(ϕ) could be obtained by replac-
ing n (n > 0 and n may depend on ϕ) non-overlapping subterms f1, f2, ..., fn in
ϕ with n new terms g1, g2, ..., gn simultaneously, where for each i ∈ {1, 2, ..., n},
fi and gi are of the same sort.

The essence of structural mutations is approximating unknown formulas. The
usefulness of retrieved satisfiability results is strongly correlated to the approxi-
mation directions. Based on Figure 1, if solvers return sat for over-approximated
formulas ϕover, the result is uninformative. Similarly, the unsat result from under-
approximated formulas ϕunder is uninformative as well. Straightforward and un-
guided approximations can easily lead to uninformative results. In the ideal case,
approximations achieved by structural mutations need to be effective (i.e., they
could make unknown formulas solvable) and admissible (i.e., they should not lead
to uninformative results).

Unfortunately, there is a tension between effectiveness and admissibleness,
and finding a sweet spot of approximations is challenging. To tackle the chal-
lenge, we devise fine-grained mutations to strike a balance between these two
competing needs. Specifically, by repeatedly applying small structural mutations
to the original formula, we get a directed acyclic graph (DAG) of mutated for-
mulas whose nodes are formulas and edges are approximation steps. The graph



Retrieving Unknown SMT Formulas via Structural Mutations 5

1 (set-logic AUFLIA)
2 (declare-fun f (Int Int) Bool)
3 (declare-fun n () Int)
4 (declare-fun v () Int)
5 (assert (! (not (exists ((x Int))
6 (and (<= 1 x) (<= x n) (f x v))))
7 :named goal))
8 (check-sat)
9 (exit)

(a) Original formula.

(
(define-fun f
(( BOUND_VARIABLE_327 Int)

(BOUND_VARIABLE_328 Int))
Bool false)

(define-fun v () Int 0)
)

(b) A model for our under-
approximated formula.

Fig. 3: An under-approximation example for CVC4, where the under-
approximation is realized by instantiating the free variable n (line 3) to 0.

is acyclic because our mutations strictly reduce formulas. Then, based on the
satisfiability results of running solvers on mutated formulas, we can perform a
backtracking search on this DAG to refine the approximated formulas ϕ′. Con-
sequently, the feedback-based iteration guides structural mutations toward the

useful directions (depicted as “
implies−−−−−→” and “

implies←−−−−−”) in Figure 1. Our fine-
grained mutation process resembles abstraction refinements. However, common
abstraction refinement techniques for SMT solvers (e.g. the mixed abstraction
technique [8]) are not directly applicable because they (1) do not explicitly handle
the unknown cases and (2) finally, always resort to the most precise abstraction
(the original formula) but in our case, the original formula is unknown.

We propose four concrete structural mutations. The mutations are both re-
ducers and approximations (i.e., they can both reduce and approximate the
original formulas). Moreover, they are all theory-independent, meaning that they
could be applied to all background theories. In our mutations, a top-level dis-
junct/conjunct denotes a disjunct/conjunct whose corresponding disjunction/-
conjunction is at the root of the formula’s abstract syntax tree (AST). For ex-
ample, in P ∨ Q, P is a top-level disjunct. A non-trivial disjunct/conjunct is
a disjunct/conjunct that is not the literal false/true. A non-trivial subterm is a
subterm that is not a single free variable.

– Removing Top-Level Disjuncts (U∨): Replacing the first top-level non-trivial
disjunct (if it exists) with false is a structural mutation. It is a reducer with
respect to the number of top-level non-trivial disjuncts. It is also a domain-
preserving under-approximation. Note that changing P ∨Q to false∨Q could
still be regarded as domain-preserving, because false ∨Q could be regarded
as a formula with free variables {P,Q} while P is not used.

– Instantiating Free Variables (Uin): Replacing all occurrences of the first oc-
curred free variable (if it exists) with one value in its sort is a structural
mutation. It is a reducer with respect to the number of free variables. It is
also a domain-adjusting under-approximation.

– Removing Top-Level Conjuncts (O∧): Replacing the first top-level non-trivial
conjunct (if it exists) with true is a structural mutation. It is a reducer with
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respect to the number of top-level non-trivial conjuncts. It is also a domain-
preserving over-approximation.

– Abstracting Subterms (Oterm): Replacing the first non-trivial subterm that
does not contain variables bound by quantifiers (if it exists) with a new
free variable of the same sort is a structural mutation. It is a reducer with
respect to the number of non-trivial subterms. It is also a domain-adjusting
over-approximation.

Note that some mutation steps could be interpreted as several different ap-
proximations. For example, replacing P in P ∧ Q with true could be regarded
as a domain-adjusting under-approximation Uin or a domain-preserving over-
approximation O∧. The actual effect is preserving the satisfiability because both
the original formula P ∧Q and the modified formula true ∧Q are satisfiable.

The definitions in Section 3 impose constraints such as “replacing the first
top-level disjunct” when there are multiple top-level disjuncts, so each applica-
tion of mutation produces only one transformed formula. It is possible to remove
those constraints and get multiple mutated formulas in each step. Therefore,
we can get more mutated formulas to use in practice. If we regard the mu-
tated formulas as nodes and approximation steps as directed edges, we form
a directed acyclic graph (DAG). It is a DAG because there is no cycle due to
the reducer property. We call the graph “under-approximation DAG” or “over-
approximation DAG”.

Our unknown formula retrieval algorithms repeatedly apply and revert muta-
tions on the original formula. Thus, it forms a process of adjusting the approxi-
mations (making more or fewer approximations) along the corresponding under-
or over-approximation DAG. Recall that approximations can be uninformative
(e.g. over-approximating a formula ϕ to a sat formula ϕ′ is uninformative since
it provides no information about ϕ). To avoid encountering too many uninfor-
mative cases, our structural mutation framework prunes the adjusting process
based on over- or under-approximation DAG: if we over-approximate the for-
mula ϕ to a satisfiable formula, we don’t need to continue the current branch of
over-approximation since further over-approximations can only produce uninfor-
mative approximations. Similarly, if we under-approximate the formula ϕ to an
unsatisfiable formula, we can stop the current branch of under-approximation.

4 Related Work

Formula simplification techniques have been developed to simplify formulas for
SMT solvers [14,33,34]. These techniques, however, produce equivalent or eq-
uisatisfiable formulas, and thus often need to do sophisticated reasoning about
Boolean logic and underlying theories. Our structural mutations relax the re-
quirement from equivalence or equisatisfiability to approximations, and thus
produce transformations that are easier to reason about.

Approximations have also been widely used to solve SMT formulas. The
DPLL(T) framework [15,28,29], which forms the basis of many modern SMT
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solvers, leverages the Boolean abstraction of the original formula and then re-
fines the abstraction using information provided by theory-specific solvers. De
Moura and Rueß [27] have proposed lemmas on demand, which is also an abstrac-
tion refinement process. Approximations can also be done in the theory/first-
order layer [10,26]. Bauer et al. have proposed a technique that can ignore parts
of the Boolean abstraction that do not affect the overall truth value [6]. Ex-
plicit approximations have been introduced to SMT solvers to model bit-vector
operations [20,37] and bit-vector values [9]. SMT solvers can also alternate be-
tween over-approximations and under-approximations [11,21,22], as well as mix-
ing them altogether [8]. Approximations also help to simplify formulas [33], to
change the decidability of certain formulas [16], etc. In the refinement aspect,
techniques similar to counter-example guided abstraction refinement [13] are
well-developed in SMT solvers. Approximating formulas can also happen outside
solvers. For example, concolic testing [18,35] simplifies formulas by instantiating
variables before using solvers to solve them. Compared with those existing tech-
niques, our structural mutations are solver/theory-independent, are not part of
any solver or automated reasoning tools, and can be applied to almost all types
of formulas.

5 Conclusion

This paper has discussed a source-level approach to improve SMT solving: in-
stead of improving solvers for all possible input formulas, we focus on mutating
(approximating) formulas that are already unknown to solvers. As the next step,
we plan to conduct an extensive study to validate the idea on real-world SMT
constraints.
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