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An interleaved-Dyck (InterDyck) language consists of the interleaving of two or more Dyck languages, where

each Dyck language represents a set of strings of balanced parentheses. InterDyck-reachability is a fundamental

framework for program analyzers that simultaneously track multiple properly-matched pairs of actions such

as call/return, lock/unlock, or write-data/read-data. Existing InterDyck-reachability algorithms are based on

the well-known tabulation technique.

This paper presents a new perspective on solving InterDyck-reachability. Our key observation is that

for the single-source-single-target InterDyck-reachability variant, it is feasible to summarize all paths from

the source node to the target node based on path expressions. Therefore, InterDyck-reachability becomes

an InterDyck-path-recognition problem over path expressions. Instead of computing summary edges as in

traditional tabulation algorithms, this new perspective enables us to express InterDyck-reachability as a

parenthesis-counting problem, which can be naturally formulated via integer linear programming (ILP).

We implemented our ILP-based algorithm and performed extensive evaluations based on two client analyses

(a reachability analysis for concurrent programs and a taint analysis). In particular, we evaluated our algorithm

against two types of algorithms: (1) the general all-pairs InterDyck-reachability algorithms based on linear

conjunctive language (LCL) reachability and synchronized pushdown system (SPDS) reachability, and (2) two

domain-specific algorithms for both client analyses. The experimental results are encouraging. Our algorithm

achieves 1.42×, 28.24×, and 11.76× speedup for the concurrency-analysis benchmarks compared to all-pair

LCL-reachability, SPDS-reachability, and domain-specific tools, respectively; 1.2×, 69.9×, and 0.98× speedup

for the taint-analysis benchmarks. Moreover, the algorithm also provides precision improvements, particularly

for taint analysis, where it achieves 4.55%, 11.1%, and 6.8% improvement, respectively.
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1 INTRODUCTION
Formal-language reachability [Yannakakis 1990] (or 𝐿-reachability) is a popular framework to

formulate many static-analysis applications [Reps 1998]. An 𝐿-reachability instance consists of
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Fig. 1. Multi-path imprecision in SPDS-reachability and LCL-reachability algorithms. This figure is a general-
ization of the example discussed in Zhang and Su [2017, Fig. 5].

(1) an edge-labeled graph representing the program under analysis, and (2) a formal language 𝐿

that captures the program properties to be analyzed. Two nodes are considered reachable in the

𝐿-reachability instance if they are joined by a path, and the realized string of the path belongs to

the formal language 𝐿. Perhaps the best-known 𝐿-reachability formulation in program analysis

is Dyck-reachability [Kodumal and Aiken 2004; Reps 1998; Zhang et al. 2013]. Specifically, it can

be used to model matched-parenthesis program properties, such as function calls/returns [Reps

2000; Reps et al. 1995], field reads/writes [Huang et al. 2015; Zhang et al. 2013], pointer refer-

ences/dereferences [Zhang et al. 2014; Zheng and Rugina 2008].

Interleaved-Dyck (InterDyck) reachability [Reps 2000] is a natural extension to Dyck-

reachability by simultaneously tracking multiple matched-parenthesis program properties.

InterDyck-reachability ismore expressive, which can formulatemore complicated analysis problems,

such as context-sensitive data-dependence analysis [Zhang and Su 2017]. However, InterDyck-

reachability is undecidable [Reps 2000], and hence practical InterDyck-reachability algorithms

are based on approximations (and are inherently imprecise). Existing approaches for solving

InterDyck-reachability include the traditional context-free-language (CFL) reachability [Reps 1998],

synchronized pushdown system (SPDS) reachability [Späth et al. 2019], and linear-conjunctive-

language (LCL) reachability [Zhang and Su 2017]. These InterDyck-reachability algorithms are

based on tabulation [Reps 1998]. Specifically, they compute a succinct representation of paths

between node pairs called summaries to derive the reachability results. These algorithms typi-

cally over-approximate InterDyck-reachability in two ways: (1) The first one is by utilizing path

over-approximations, i.e., the algorithms treat all the paths between two nodes as if there is only

one single path. Specifically, in SPDS-reachability and LCL-reachability algorithms, properties in

a single path between a pair of nodes are considered to exist along all paths between the nodes.

(2) The second way is by utilizing over-approximative summaries, i.e., the summaries themselves

cannot precisely express InterDyck-reachability. For example, the CFL-reachability approach for

InterDyck-reachability [Huang et al. 2015; Reps 1998; Yan et al. 2011] uses over-approximative

summaries because the InterDyck language is not a CFL. Specifically, one of the Dyck languages

in the InterDyck language is over-approximated using a regular language. Then the InterDyck-

reachability problem becomes a CFL-reachability problem, which can be solved by the standard

CFL-reachability tabulation algorithm [Reps 1998].

The two over-approximation methods introduce the following sources of imprecision:

• Multi-path imprecision. An InterDyck-reachability algorithm using path over-approximation

cannot distinguish different paths between a pair of nodes. For example, in the LCL-

reachability and SPDS-reachability algorithms, an InterDyck-path needs to satisfy two (or

more) summary conditions expressed in the corresponding Dyck languages simultaneously.
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However, the algorithms can check only one summary condition at a time. They cannot dis-

tinguish different paths between a pair of nodes, and conservatively aggregate the summaries

of all paths, which leads to imprecision. Consider the example in Figure 1. Suppose that there

exists a path 𝑝1 between node 𝑠 and node 𝑡 satisfying one summary condition 𝐴, and another

path 𝑝2 satisfying summary condition 𝐵. The algorithms conservatively assume that there

exists a path between 𝑠 and 𝑡 that satisfies 𝐴 and 𝐵 simultaneously.

• Finite summary approximation. Another source of imprecision comes from the imprecise

formulation based on finite summaries. For example, the CFL-reachability approach uses CFL

summaries to approximate InterDyck-reachability. These finite summaries are inherently

approximations and thus introduce imprecision.

The two over-approximation techniques are indeed pervasive [Arzt et al. 2014; Feng et al. 2015;

Späth et al. 2019; Zhang and Su 2017], and almost all existing all-pairs InterDyck-reachability
algorithms utilize at least one of the techniques. The key enabling insight of our approach is that

for single-source-single-target InterDyck-reachability, it is unnecessary to build summaries for all

intermediate node pairs that belong to the paths from the source 𝑠 to the target 𝑡 . Specifically, we

can explicitly represent all paths from 𝑠 to 𝑡 based on path expressions [Tarjan 1981]. Over path

expressions, InterDyck-reachability becomes a parenthesis-counting problem. We can formulate the

parenthesis-counting problem as an integer linear programming (ILP) problem [Schrijver 1998],

which can be effectively solved by off-the-shelf ILP solvers [Gurobi Optimization, LLC 2021]. To

sum up, the essence of our approach consists of two principal ideas, which mitigate, respectively,

the corresponding sources of imprecision in traditional summary-based tabulation algorithms.

• Path expressions. To avoid multi-path imprecision, instead of tracking reachability between

node pairs, our proposed algorithm computes path expressions, which represent all paths

between nodes 𝑠 and 𝑡 , and transforms the InterDyck-reachability problem into a valid-

path-recognition problem. With this new perspective, for the same example in Figure 1, the

algorithm analyzes paths 𝑝1 and 𝑝2 independently, avoiding the multi-path imprecision.

• Parenthesis-counting. We address the finite summary approximation by transforming the

reachability problem into a parenthesis-counting problem based on an ILP formulation over

path expressions. A path expression provides the structure of all paths between the source

and the target. In a path expression, each Kleene star represents some number of traversals

of a cycle. Along a valid InterDyck-path, for each kind of parentheses, there should always

be more open parentheses than close parentheses. We use these restrictions to create an ILP

encoding and check whether there exists a valid path after completing a certain number of

traversals of a cycle. Indeed, the ILP solver explores an infinite set of natural numbers as the

search space for each cycle. Consequently, it can explore every possible path but avoid using

a finite number of summaries in reachability computation.

Single-source-single-target InterDyck-reachability is particularly useful for formulating demand-

driven program-analysis problems [Heintze and Tardieu 2001; Sridharan et al. 2005; Yan et al. 2011].

We implemented our single-source-single-target InterDyck-reachability algorithm and evaluated

it using two client analyses: a concurrent program state-reachability analysis on the DDVerify

benchmark from Witkowski et al. [2007], and a demand-driven taint analysis on the benchmark

from Huang et al. [2015]. Table 1 summarizes the experimental results. Specifically, we compared

our algorithm against two state-of-the-art InterDyck-reachability algorithms, SPDS-reachability

and LCL-reachability. In addition, we also compared it with two domain-specific analysis tools.

For concurrent program analysis, we compared our algorithm with CUBA [Liu and Wahl 2018], a

context-unbounded analysis tool for recursive concurrent programs. For the taint-analysis applica-

tion, we compared our algorithm with the DroidInfer tool [Huang et al. 2015].
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Table 1. Summary of our improvement results in experiments. For the concurrency-analysis benchmark,
because the domain-specific tool CUBA utilizes under-approximations, we use the notation “-” to represent
the precision is incomparable for two algorithms.

vs. LCL-reachability vs. SPDS-reachability vs. Domain-specific

Speedup Precision Memory Speedup Precision Memory Speedup Precision

Concurrency 1.42× 0% 57% 28.24× 6.8% -10.4% 11.76× -

Taint analysis 1.20× 4.55% 53% 69.9× 11.1% 59.4% 0.98× 6.8%

The experimental results are encouraging: our proposed algorithm achieves better performance

and precision results. Specifically, as shown in columns 2, 5, and 8 in Table 1, our algorithm achieves

1.42×, 28.24×, and 11.76× speedup for the concurrency-analysis benchmark compared to all-pairs

LCL-reachability, SPDS-reachability, and domain-specific tools, respectively; 1.20×, 69.9×, and
0.98× speedup for the taint-analysis benchmark. Moreover, for the demand-driven queries, columns

3, 6, and 9 show that our algorithm improves the analysis precision, particularly for taint analysis,

where it achieves 4.55%, 11.1%, and 6.8% improvement, respectively. Columns 4 and 7 demonstrate

the memory consumption results. Our algorithm can save more than 50% in comparison with SPDS-

reachability in the taint-analysis benchmark, and both LCL-reachability and SPDS-reachability in

the concurrency-analysis benchmark.

The contributions of the work are as follows:

• We present a novel single-source-single-target InterDyck-reachability algorithm. Our algo-

rithm is based on a new technical insight: using path expressions and ILP to address two

sources of imprecision in the state-of-the-art InterDyck-algorithms.

• We implemented and evaluated the algorithm against two state-of-the-art InterDyck-

reachability algorithms and two domain-specific static analysis tools. The experimental

results demonstrate that: (i) our algorithm provides significant speedup and better precision

compared to the all-pairs InterDyck-reachability algorithms; and (ii) it shows more than an

order-of-magnitude of speedup compared with the context-unbounded analysis tool CUBA.

Organization. The remainder of the paper is organized as follows: Section 2 discusses a moti-

vating example that illustrates the benefits of our algorithm. Section 3 introduces terminology

and notations. Section 4 presents the details of the algorithm. Section 5 presents the experimental

results. Section 6 discusses related work. Section 7 concludes.

2 MOTIVATING EXAMPLE
This section motivates our single-source-single-target InterDyck-reachability algorithm using a

concrete example in Figure 2. Consider the InterDyck-reachability between nodes 𝐴 and 𝐸 in

Figure 2a. It is straightforward to see that there is no InterDyck-path between them. However, the

state-of-the-art SPDS-reachability and LCL-reachability algorithms both report that 𝐸 is InterDyck-

reachable from 𝐴. We illustrate how multi-path imprecision and finite-state approximation occur

in those two algorithms, and then describe how our algorithm addresses the imprecision.

2.1 Existing InterDyck-Reachability Algorithms
We first briefly introduce the state-of-the-art InterDyck-reachability algorithms.

• SPDS-reachability [Späth et al. 2019]. The SPDS-reachability algorithm utilizes a synchronized

pushdown system (SPDS) to model InterDyck-reachability. Specifically, the SPDS model

employs stacks to describe the Dyck languages in the InterDyck language. The reachability

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 35. Publication date: January 2023.



Single-Source-Single-Target Interleaved-Dyck Reachability 35:5
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(a) Input graph.
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(b) Path expressions and their corresponding paths.

Fig. 2. Computing single-source-single-target InterDyck-reachability between node 𝐴 and node 𝐸.

algorithm runs in two phases for the InterDyck language of two Dyck languages. In each

phase, the SPDS-reachability algorithm uses one stack to precisely model one of the Dyck

languages while discarding the other Dyck language. If a node pair is Dyck-reachable in both

phases, it is considered to be InterDyck-reachable.

• LCL-reachability [Zhang and Su 2017]. The LCL-reachability algorithm reformulates the

InterDyck-reachability problem as an equivalent linear-conjunctive-language reachability

problem. The algorithm over-approximates LCL-reachability by computing summaries based

on the tabulation technique. The summary of a realized string 𝑠 ∈ Σ∗ can be determined

by the summaries of its sub-strings 𝑠1, 𝑠2 ∈ Σ∗, where 𝑠 = 𝑠1 · 𝑏 = 𝑎 · 𝑠2 with 𝑎, 𝑏 ∈ Σ and “·”
denotes string concatenation operation.

Both algorithms report a false-positive result that node 𝐸 is InterDyck-reachable from node 𝐴 in

Figure 2a. We then discuss the two sources of imprecision.

• Imprecision in SPDS-reachability. The multi-path imprecision in the SDPS-reachability algo-

rithm stems from the two-phase reachability computation described above. For each phase,

the algorithm recognizes a set of reachable node pairs for one Dyck-reachability problem.

If a node pair is reachable in both phases, it is possible that the node pair is reachable via

two different paths, and there exist no InterDyck-paths. Consider the motivating example

in Figure 2. The path 𝐴→ 𝐵 → 𝐶 → 𝐷 → 𝐸 is a Dyck-path of the parenthesis language if

the brackets along the path are ignored. Similarly, nodes 𝐴 and 𝐸 are Dyck-reachable in the

path 𝐴→ 𝐹 → 𝐺 → 𝐹 → 𝐸 for the bracket Dyck language (when parentheses are ignored).

The SPDS-reachability algorithm recognizes the node pair (𝐴, 𝐸) in both Dyck-reachability

problems—and thus it reports the node pair (𝐴, 𝐸) as InterDyck-reachable—even though

Dyck-reachability for the two Dyck languages holds along two different paths.

• Imprecision in LCL-reachability. The LCL-reachability algorithm exhibits both multi-path im-

precision and finite-summary approximation in this example. The LCL-reachability algorithm

uses finite summaries to model InterDyck-reachability, which is inherently approximative.

For example, LCL-reachability represents path strings “L1” and “L1L1” using the same summary.

In addition, the LCL-reachability algorithm exhibits multi-path imprecision as discussed

by Zhang and Su [2017, Sec. 7.2]. Recall that to obtain the summary of a string 𝑠 in LCL-

reachability, we need the summaries of 𝑠1 and 𝑠2 where 𝑠 = 𝑠1 · 𝑏 = 𝑎 · 𝑠2 and 𝑎, 𝑏 ∈ Σ.
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Consider computing a summary 𝑠 for paths from node 𝐴 to node 𝐸 in Figure 2a. The corre-

sponding summaries of 𝑠1 and 𝑠2 are 𝐴
L1J2M1−−−−→ 𝐷 and 𝐹

J2M1K2−−−−→ 𝐸, respectively. Note that in

LCL-reachability, path strings 𝑠1 = “L1J2M1” and 𝑠2 =“J2M1K2” can form a valid InterDyck-word

“𝑠 = L1J2M1K2” with 𝑏 =“K2” and 𝑎 =“L1.” Therefore, the LCL-reachability algorithm obtains

a new summary by combining the summaries 𝑠1 and 𝑠2, and the new summary indicates

the node pair (𝐴, 𝐸) is InterDyck-reachable. However, the summaries 𝑠1 and 𝑠2 are from two

different paths, so there exists no path that realizes the InterDyck-string “L1J2M1K2”.

2.2 New Insights for Single-Source-Single-Target InterDyck-Reachability
For single-source-single-target InterDyck-reachability, our new algorithm considers the path ex-

pressions shown in Figure 2b. By utilizing path expressions, our algorithm can capture paths going

through the same set of cycles and formulate the reachability problem as a parenthesis-counting

problem. As a result, it can avoid the aforementioned sources of imprecision and conclude that

node 𝐸 is not InterDyck-reachable from node 𝐴 in Figure 2a. Next, we discuss the insights behind

path expressions and parenthesis counting.

Path expressions. Utilizing path expressions between the source node and target node can over-

come the multi-path imprecision. Because our algorithm addresses a single-source-single-target

reachability problem, we can indeed adopt Tarjan’s method [Tarjan 1981] to compute a path ex-

pression, which represents all paths from the source to the target. In particular, a path expression

is a regular expression that contains all realized strings of the paths. Consider again the example in

Figure 2. The path expression between node 𝐴 and node 𝐸 is “L1J2M1K1 | L2 (J2M1)∗K2.” As shown in

Figure 2b, this path expression shows that all paths between the nodes 𝐴 and 𝐸 can be split into

two sets: one corresponding to the expression “L1J2M1K1” and the other set corresponding to the

expression “L2 (J2M1)∗K2”. The first set (only a single path in this example) follows the upper path

𝐴→ 𝐵 → 𝐶 → 𝐷 → 𝐸. Paths in the other set go from node 𝐴 to 𝐹 , potentially through the cycle

𝐹 → 𝐺 → 𝐹 for an arbitrary number of times, and then to 𝐸. A Kleene star in a path expression

represents a cycle in the path. For example, “(J2M1)∗” represents the cycle 𝐹 → 𝐺 → 𝐹 . Thus, we

can obtain the path structures from the path expression, i.e., the cycles in the path, and how they

are connected. Figure 2b gives the two path structures extracted from the corresponding path

expression. Then, we can analyze every single path structure between the node pair directly. By

solving the number the traversals for each cycle, we can explore every path in the path structure,

thus completely addressing the multi-path imprecision.

Parenthesis-counting. The parenthesis-counting formulation can avoid approximating paths

based on finite summaries. With path expressions, we can reason about paths of a fixed structure.

For a specific path, we only need to fix the number of cycles traversed in the path structure. This

is the key enabling insight behind formulating InterDyck-reachability as a parenthesis-counting

problem based on integer linear programming (ILP). In our ILP encoding, we use a variable to

represent the number of times a specific cycle is traversed. The balanced-parenthesis property in

InterDyck-reachability naturally forms an ILP instance. Specifically, in Figure 2, the path-expression

fragment “L1J2M1K1” contains no Kleene stars; thus, we can express it as an ILP problem instance

without any variables as follows:

1 − 1 = 0 (for L1, M1)
−1 = 0 (for J1, K1)
1 = 0 (for J2, K2).
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Each equality in the ILP instance is derived from the balanced-parenthesis property. For example,

the first equation “1−1 = 0” means that there exists one “L1” and one “M1” in the “L1J2M1K1” expression.
This ILP system is clearly infeasible. It means that all the paths following this path structure are not

valid InterDyck-paths. Similarly, for the expression “L2 (J2M1)∗K2”, we obtain another ILP system:

−𝑥 = 0 (for L1, M1)
1 = 0 (for L2, M2)

𝑥 − 1 = 0 (for J2, K2).
In this ILP system, the variable 𝑥 represents the number of times the cycle 𝐹 → 𝐺 → 𝐹 is traversed.

This ILP system is also infeasible, which means that no paths following the corresponding path

structure are valid InterDyck-paths. Unlike SPDS- and LCL-reachability, the ILP formulation for

the parenthesis-counting problem does not rely on approximating paths. Consequently, we can

avoid the imprecision from finite-summary approximation.

Our discussion has covered all path structures in Figure 2, and there exists no InterDyck-path

between node 𝐴 and node 𝐸. Thus, node 𝐸 is not InterDyck-reachable from node 𝐴. Note that

because InterDyck-reachability is undecidable [Reps 2000], our algorithm is inherently imprecise.

One source of imprecision comes from the parenthesis-counting formulation for recognizing valid

InterDyck-paths because the formulation overlooks the ordering among the parentheses.

3 PRELIMINARIES
This section gives the definitions used in ourwork. Section 3.1 defines Dyck languages and InterDyck

languages. Section 3.2 introduces InterDyck-reachability. Section 3.3 describes path expressions

and the standard form used in our algorithm.

3.1 Dyck Languages and InterDyck Languages
A Dyck language describes a set of strings with 𝑘 kinds of balanced parentheses. It is a context-free

language with the alphabet Σ = {L1, · · · , L𝑘 , M1, · · · , M𝑘 } and the following grammar:

𝑆 = 𝑆 𝑆 | 𝜖
𝑆 = L𝑖 𝑆 M𝑖 for 𝑖 = 1, · · · , 𝑘 .

An interleaved Dyck (InterDyck) language, a typical non-context-free language, combines multi-

ple Dyck languages based on an interleaving operator ⊙.

Definition 3.1 (Interleaving operator). ⊙ : Σ∗ × Σ∗ → P(Σ∗) is a binary operator that takes two

strings and returns a set of strings, where P(·) denotes the power-set operator. The operator ⊙
is inductively defined as follows: for every 𝑢 ∈ Σ∗, we have 𝑢 ⊙ 𝜖 = 𝜖 ⊙ 𝑢 = {𝑢}. Moreover, for

every 𝛼1, 𝛼2, 𝑢1, 𝑢2 ∈ Σ∗, 𝛼1𝑢1 ⊙ 𝛼2𝑢2 = {𝛼1𝑤 | 𝑤 ∈ (𝑢1 ⊙ 𝛼2𝑢2)} ∪ {𝛼2𝑤 | 𝑤 ∈ (𝛼1𝑢1 ⊙ 𝑢2)}. The
interleaving operator can be extended to languages with

𝐿1 ⊙ 𝐿2 =
⋃

𝑢1∈𝐿1,𝑢2∈𝐿2
𝑢1 ⊙ 𝑢2.

Note that ⊙ is associative—i.e., (𝐿1 ⊙ 𝐿2) ⊙ 𝐿3 = 𝐿1 ⊙ (𝐿2 ⊙ 𝐿3)—and hence can be extended to 𝑘

Dyck languages with disjoint alphabets.

With the definition of the interleaving operator, we can formally describe the InterDyck language.

Definition 3.2 (InterDyck language). The InterDyck language 𝐿 is the interleaving of multiple

Dyck languages, i.e., the language 𝐿 = 𝐿1 ⊙ · · · ⊙ 𝐿𝑘 where 𝑘 is an integer with 𝑘 ≥ 2, and each 𝐿𝑖
is a Dyck language for every 𝑖 = 1, · · · , 𝑘 .
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3.2 InterDyck-Reachability
This work focuses on InterDyck-reachability, which belongs to the general formal-language-

reachability framework [Reps 1998].

Definition 3.3 (Formal-language-reachability problem). Given a formal language 𝐿 and a directed

edge-labeled graph𝐺 = (𝑉 , 𝐸) with each edge 𝑒 ∈ 𝐸 labeled by a terminal 𝑡 ∈ Σ, we say that a path

𝑝 = 𝑒1𝑒2 . . . 𝑒𝑚 in G realizes a string 𝑅(𝑝) over the alphabet Σ by concatenating the edge labels in

the path in order, i.e., 𝑅(𝑝) = 𝑡1𝑡2𝑡3 . . . 𝑡𝑚 where 𝑡𝑖 is the label for 𝑒𝑖 . A path 𝑝 in𝐺 is an 𝐿-path if the

realized string 𝑅(𝑝) is a word in the formal language 𝐿. Node 𝑣 is 𝐿-reachable from node 𝑢 iff there

exists an 𝐿-path from 𝑢 to 𝑣 in 𝐺 . The formal-language-reachability problem for 𝐿, abbreviated as

the 𝐿-reachability problem Reach⟨𝐿,𝐺⟩, is to compute all the 𝐿-reachable node pairs in the graph

𝐺 . The single-source-single-target variant of the 𝐿-reachability problem for a node pair (𝑢, 𝑣) is to
compute whether 𝑣 is 𝐿-reachable from 𝑢.

Using this definition, we now define the InterDyck-reachability problem.

Definition 3.4 (InterDyck-reachability). The InterDyck-reachability problem is a formal-language-

reachability problem Reach⟨𝐿,𝐺⟩ with 𝐿 being an InterDyck language (Definition 3.2). The single-

source-single-target variant of the problem is to decide whether a given node pair𝑢, 𝑣 is 𝐿-reachable.

3.3 Path Expressions and Integer Linear Programming (ILP) Standard Form
Our work solves the single-source-single-target reachability problem by generating path expres-
sions and then formulating InterDyck-reachability as an InterDyck-path recognition problem via

parenthesis counting. We formally define path expressions as follows.

Definition 3.5 (Path expressions). Given an edge-labeled graph 𝐺 = (𝑉 , 𝐸), the path expression

from node 𝑢 to node 𝑣 is a regular expression RegExp satisfying the following conditions: (1) For

every path 𝑝 between nodes 𝑢 and 𝑣 , its realized string 𝑅(𝑝) is a word in the regular language

defined by RegExp; and (2) conversely, for any word𝑤 ∈ RexExp, there exists a path 𝑝 from 𝑢 to 𝑣

such that its realized string 𝑅(𝑝) = 𝑤 .

Based on parenthesis counting, our reachability algorithm requires the path expressions to be in

an integer linear programming (ILP) standard form.

Definition 3.6 (ILP standard form). A path expression RegExp is in the ILP standard form if it has

the form of RegExp = 𝑡1 |𝑡2 | . . . |𝑡𝑁 , where each 𝑡𝑖 for 𝑖 = 1. . . . 𝑁 is a regular expression without

any occurrences of the “or” operation.

Any regular expression 𝑅 can be transformed into a regular expression 𝑅ILP in the ILP standard

form that generates the same language (i.e., 𝐿(𝑅) = 𝐿(𝑅ILP))—see Section 4.2

4 APPROACH
4.1 Overview
Our algorithm takes as input a triple (𝐺, 𝑠, 𝑡), where 𝐺 is an edge-labeled graph and 𝑠 and 𝑡 are

the source and target nodes, respectively. The algorithm requires the input graph 𝐺 to be a finite

graph and to be fully available at the time the query is issued. We specifically do not address the
situation in which we are given 𝑠 and 𝑡 , and the algorithm has the ability to explore some other

structure—such as an abstract-syntax tree—from which 𝐺 can be constructed on the fly.

Algorithm 1 gives our single-source-single-target InterDyck-reachability algorithm. The algo-

rithm first applies Tarjan’s method [Tarjan 1981] to generate a path expression in the ILP standard

form on line 1. Section 4.2 discusses the path-expression generation. For each “disjunct” (i.e., each
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Algorithm 1:Main algorithm for single-source-single-target InterDyck-reachability.

Input : Edge-labeled graph 𝐺 = (𝑉 , 𝐸), a start node 𝑠 , and a target node 𝑡 ;

Output :A Boolean indicating whether node 𝑡 is InterDyck-reachable from node 𝑠 in 𝐺 .

1 RegExp← TarjansMethod (𝐺, 𝑠, 𝑡) ; // RegExp is in ILP standard form

2 foreach sub regular expression 𝑡𝑖 of path expression RegExp = 𝑡1 | . . . |𝑡𝑁 do
3 LP_instance← GenerateLPInstance (𝑡𝑖 )
4 if SolveLP(LP_instance) is True then
5 return True

6 return False

or-operator-separated sub-expression), the algorithm generates a set of constraints to obtain an ILP

instance (line 3). If an ILP solver concludes that the constraints are solvable, our algorithm returns

that the target node 𝑡 is InterDyck-reachable from the source node 𝑠 (line 5).

Section 4.3 discusses how to encode path expressions as ILP instances. Note that the ILP standard

form can contain an exponential number of disjuncts in the worst case. Section 4.4 further presents

a technique to reduce the number of terms in the ILP form. Our experiments (Section 5.4) indicate

that the worst-case exponential blow-up does not occur in practice.

4.2 Generating Path Expressions
Path expressions are central to our InterDyck-reachability algorithm, i.e., our algorithm decides

reachability between nodes 𝑠 and 𝑡 based on the corresponding ILP instances obtained from a path

expression from node 𝑠 to node 𝑡 .

Tarjan’s method. We use Tarjan’s method [Tarjan 1981] to generate a regular expression RegExp.
The path expression is a succinct representation of the realized strings of all the paths between 𝑠

and 𝑡 . Tarjan’s method can generate path expressions in𝑂 ( |𝐸 |𝛼 ( |𝐸 |)) time, where |𝐸 | is the number

of edges in the graph and 𝛼 is the inverse Ackermann function. It assumes that graph 𝐺 is fully

known before constructing the path expression. Consequently, our algorithm does not apply to a

situation in which a graph is being explored on the fly, and the goal is to test InterDyck-reachability

along newly discovered paths (and possibly sped up by refuting partial paths).

Regular-expression representation. The choice of the representation of path expressions plays

a key role in our algorithm. We use a hash-consed [Goto 1974] acyclic-graph representation

(HCAG) of regular expressions. The HCAG representation consists of four types of nodes: terminal

nodes, concatenation nodes, or nodes, and star nodes. Each terminal in the regular expression

corresponds to a terminal node in the graph. The concatenation nodes and or nodes are binary
nodes. A concatenation node with two children 𝑎 and 𝑏 (ordered left-to-right) represents the regular

expression “𝑎 · 𝑏.” Similarly, an or node with two children 𝑎 and 𝑏 represents the regular expression

“𝑎 | 𝑏.” A star node is a unary node; if the child node represents a regular expression 𝑎, the star node

corresponds to the Kleene star “𝑎∗.” In the HCAG representation, different nodes represent different

regular expressions; each regular expression also has a unique representative node in the HCAG.

Example 4.1 (HCAG representation). Consider the regular expression “(L∗
1
J
1
|J
1
)∗K

1
L∗
1
.” Figure 3

depicts its HCAG representation. Each node in the graph represents a unique regular sub-expression.

For example, the sub-expression “L∗
1
” appears twice in the regular expression. But there is only one

corresponding node in the graph, which is the leftmost star node. In this example, its two in-edges

represent there are two occurrences of this expression in the regular expression: it serves as the

operand for two different concatenation operations.
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·

Fig. 3. HCAG representation of the regular expression “(L∗
1
J
1
|J
1
)∗K

1
L∗
1
.”

L1 J1 K1

·

∗

∗
·

·

∗

·

Fig. 4. HCAG representation of the ILP standard form “((L∗
1
J
1
)∗J1)∗K

1
L∗
1
” for the regular expression

“(L∗
1
J
1
|J
1
)∗K

1
L∗
1
” in Figure 3.

During path-expression generation, we normalize regular expressions into the ILP standard form.

Indeed, we can obtain the ILP standard form of a regular expression using the transformations:

• (𝑎 |𝑏)∗ = (𝑎∗𝑏∗)∗
• (𝑎 |𝑏) · 𝑐 = (𝑎𝑐 |𝑏𝑐).

Because the above rules cover both the “
∗
” and “·” operations, it is then immediate that we can

always generate an ILP standard form for any regular expression.

Theorem 4.2. Every regular expression has an ILP standard form.

Example 4.3 (ILP standard form). Consider the regular expression “(L∗
1
J
1
|J
1
)∗K

1
L∗
1
” in Example 4.1.

By applying the transformation rules, we can obtain a regular expression in the ILP standard form:

((L∗
1
J
1
)∗J1)∗K1L∗1. Figure 4 depicts the HCAG representation of this regular expression.

4.3 ILP Encoding
Algorithm 2 encodes the path expression as an ILP instance. The top-level sub-expressions of a

path expression in ILP standard form—its disjuncts—provide a kind of global view of the paths

between 𝑠 and 𝑡 . The Kleene-star operators in a disjunct represent the cycles in the paths. The idea

behind our ILP encoding is to assign variables to the cycles in the path. Each variable represents

the number of times the path goes through the associated cycle.
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s t

L1 J2

M1

K2 M1

Fig. 5. Path structure for the regular expression “(L1J2)∗M1 (K2M1)∗.”

Consider a regular expression “(L1J2)∗M1 (K2M1)∗.” This regular expression corresponds to the

path structure in Figure 5 with two cycles, 𝐶1 and 𝐶2. The realized strings 𝑅(𝐶1) of the left cycle
𝐶1 and 𝑅(𝐶2) of the right cycle 𝐶2 are “L1J2” and “K2M1,” respectively. A path from 𝑠 to 𝑡 could go

through each of𝐶1 and𝐶2 arbitrarily many times. We associate a variable 𝑥1 with the cycle𝐶1, and

a different variable 𝑥2 with the cycle𝐶2. For this path expression, the generated ILP constraints are:

𝑥𝑖 ≥ 0

𝑥1 − 1 − 𝑥2 = 0 (for L1, M1)
𝑥1 − 𝑥2 = 0 (for J2, K2).

The first inequality 𝑥𝑖 ≥ 0 is due to the fact that the path cannot traverse a cycle for a negative

number of times. The second equation comes from the balanced parenthesis property for “L1”.
Similarly, we can obtain the last equation for “J2”. After generating the ILP instance, we utilize

existing ILP solvers to obtain a solution. If the ILP instance is feasible, we conclude that the node 𝑡

is InterDyck-reachable from 𝑠 . In this example, the ILP problem is infeasible because 𝑥1 − 1− 𝑥2 = 0

contradicts with 𝑥1 − 𝑥2 = 0. The contradiction indicates that the path expression (L1J2)∗M1 (K2M1)∗
does not admit any valid InterDyck-paths.

ILP-constraint generation. We generate ILP constraints in a bottom-up traversal of the HACG

representation. Algorithm 2 employs a three-dimensional table “count” for ILP-constraint genera-
tion. For each regular-expression node 𝑣 , there exists a two-dimensional slice of the count table
denoted as count[𝑣]. The entry count[𝑣] [𝑖] [ 𝑗] of the slice contains a template to generate linear

expressions that represent the number of unmatched open parentheses for the 𝑗 th parenthesis

symbol of the 𝑖 th Dyck-language. For example, for the regular expression (L1J1)∗ (L1L1)∗, the count
table contains the template “𝑥 + 2 · 𝑦” in the entry count[𝑣] [1] [1] (if we regard parentheses as the

first Dyck language and brackets are the second) and the template “𝑥” in the entry count[𝑣] [2] [1].
Within the count table for the same node, if there exist occurrences of identical variables for

different parentheses/brackets, they refer to the same variable; i.e., in this example, the variable

𝑥 in count[𝑣] [1] [1] and count[𝑣] [2] [1] can be shared. Notice that even though “L1” and “J1” are
in different Dyck languages, when their templates share a variable, it means they are in the same

cycle. Therefore, we can re-use the common variable. However, this does not apply to the case

where one variable in the count table corresponds to two different nodes in the graph. Intuitively,

for two different nodes, there is no correspondence between the number of times each appears in

the paths. For instance, if there are two templates “𝑥 + 𝑦” and “2 · 𝑥 + 𝑦” in the count table for two
different nodes, the “sum” of their templates is “𝑥1 + 𝑦1 + 2 · 𝑥2 + 𝑦2” instead of “3 · 𝑥 + 2 · 𝑦.”
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Algorithm 2: GenerateLPInstance(𝑡 ) – ILP constraint generation.

Input :A path expression 𝑡 without “or” nodes, represented by acyclic graph 𝐺 = (𝑉 , 𝐸);
Output :A constraint table 𝑇 for each node.

1 Topologically sort the node set𝑉 in ascending order in𝐺 , i.e., the ordering of a node is always larger than
its children nodes.

2 foreach node 𝑣 ∈ 𝑉 do
3 if node 𝑣 represents a terminal then
4 if the terminal is L𝑗 in the 𝑖th Dyck language then
5 count[𝑣] [𝑖] [ 𝑗] = 1

6 if the terminal is M𝑗 in the 𝑖th Dyck language then
7 count[𝑣] [𝑖] [ 𝑗] = -1

8 if node 𝑣 represents a concatenation operator then
9 Let 𝑣1, 𝑣2 be the two children nodes of 𝑣

10 if bad[𝑣1] is True or bad[𝑣2] is True then
11 bad[𝑣] =True; continue
12 count[𝑣] = count[𝑣1] + count[𝑣2]
13 if node 𝑣 represents a star operator then
14 Let 𝑣1 be the child node of 𝑣

15 if bad[𝑣1] is True then
16 continue

17 let 𝑥 be a fresh variable

18 foreach (𝑖, 𝑗) with 𝑗 representing the parenthesis index in the 𝑖th Dyck language do
19 if count[𝑣1] [𝑖] [ 𝑗] contains any variable then
20 let 𝑦 be a fresh variable

21 count[𝑣] [𝑖] [ 𝑗] = 𝑦

22 else
23 count[𝑣] [𝑖] [ 𝑗] = count[𝑣1] [𝑖] [ 𝑗] · 𝑥

24 return count

To generate the count table, during the bottom-up traversal, when encountering a star operator,

the algorithm allocates a variable associated with the cycle. When encountering a concatenation

node, we generate a new count table entry based on the sum of its child nodes’ entries. Therefore,

the count table can encode the property that the number of open parentheses should be equal to the

number of close parenthese in any valid InterDyck-paths. We now proceed to discuss Algorithm 2.

• Line 1: We first sort nodes in topological order. The topological sort ensures that the ordering

of a parent node is always greater than the ordering of the children nodes. Then, the algorithm

performs a bottom-up graph traversal by filling the count table in ascending order.

• Lines 3-7: We consider three types of nodes: (1) terminal nodes, (2) concatenation nodes, and

(3) star nodes. Note that Algorithm 2 does not need to consider the “or” operator because “or”

operators have been lifted to the top-level in the ILP standard form. Each disjunct of a regular

expression in the ILP standard form is considered separately by Algorithm 2. Lines 3-7 handle

terminal nodes. The count table maintains the number of unmatched open parentheses for

each type of parenthesis symbol. The algorithm set the corresponding count entry value to

“1” if the terminal is an open parenthesis. Otherwise, it sets the entry to “−1”. The values in
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entries of count table can be negative, which indicates that the corresponding expressions

contain unmatched close parentheses.

• Lines 8-12: For a concatenation node, we obtain the number of unmatched parentheses by

computing the sum of its two children nodes. Specifically, line 12 assigns the summation

result to the count-table entry. On lines 10-11, when the sub-expression cannot be part of

a valid InterDyck word, it skips the count-table computation. We associate each node with

a Boolean variable bad (line 10). If the bad value is true, its corresponding sub-expression

cannot be involved in any valid InterDyck words. In Section 4.4 we have a further discussion

on the computation of the bad variable.

• Lines 13-23: Each Kleene star represents a potential cycle in the path. On line 17, the

algorithm first obtains a new variable representing the number of times the cycle is traversed

in the path. On line 23, each unmatched parenthesis is multiplied by the new variable. Note

that when the count table entry already contains a variable, we cannot simply multiply it

with the new variable because it would otherwise make the result non-linear. Instead, we

replace the result with another new variable (lines 19-21). Maintaining linearity is key to

over-approximating the balanced-parenthesis property with parenthesis counting.

With the count table, for each regular sub-expression 𝑡 , we generate ILP constraints to guarantee

that the number of open parentheses is equal to the number of close parentheses. Specifically,

for every entry in count[𝑡], we add a new constraint count[𝑡] [𝑖] [ 𝑗] = 0. If the application allows

unmatched open parentheses, we can also set the constraint to be count[𝑡] [𝑖] [ 𝑗] ≥ 0. In addition, if

the entry bad[𝑡] is True, we can skip constraint generation and directly report that the ILP instance

is not solvable. Therefore, we obtain an ILP problem instance (line 3 in Algorithm 1). The next

step is to solve the ILP problem instance with an ILP solver. If the problem instance is feasible, the

algorithm reports that 𝑡 is InterDyck-reachable from 𝑠 .

Example 4.4 (ILP constraint generation). Consider the regular expression ((L∗
1
J
1
)∗J1)∗K1L∗1. Figure 4

shows the HCAG representation of the regular expression. Algorithm 2 traverses the nodes in a

bottom-up manner. It first generates the count table for the node representing the terminal “L1”
(lines 3-7). Because “L1” is an open parenthesis, line 5 sets count[L1] [1] [1] to 1. The algorithm then

considers the node that represents “L∗
1
”. It is a star-operator node, which is handled by the branch

on lines 13-23. Because the count table of its child node “L1” already contains count[L1] [1] [1] = 1,

the algorithm sets count[L∗
1
] [1] [1] to 1 · 𝑥 = 𝑥 on line 23. Similarly, the algorithm iterates over

the remaining nodes of the regular expression to complete the count table. Finally, we have

count[((L∗
1
J
1
)∗J1)∗K1L∗1] [1] [1] = 𝑦1 +𝑥1 and count[((L∗1J1)∗J1)∗K1L∗1] [2] [1] = 𝑦2 − 1. As a result, the

constraint for “L1” is 𝑦1 + 𝑥1 = 0 and the constraint for “J1” is 𝑦2 − 1 = 0.

Over-approximation in ILP constraint generation. Because the InterDyck-reachability problem is

undecidable, and the ILP problem is NP-complete, the ILP constraints indeed over-approximate

InterDyck-reachability. On lines 19-21, we over-approximate a non-linear expression using a new

variable, which does not rely on existing variables. The second source of over-approximation

is that for the InterDyck language, the ordering among different types of parentheses in the

same Dyck language is not strictly enforced in the ILP constraints. For example, for the regular

expression L∗
1
L2M1J2 as a prefix for InterDyck-word, the non-negativity prefix constraints generated

for parenthesis “L1” (𝑥 − 1 ≥ 0) and parenthesis “L2” (1 ≥ 0) cannot express the property that

the close parenthesis “M1” cannot immediately follow the open parenthesis “L2” in any valid Dyck

strings. Section 4.4 discusses a technique to mitigate this type of over-approximation by utilizing

the bad variable in Algorithm 2.
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Algorithm correctness. Because Tarjan’s method [Tarjan 1981] always computes correct path

expressions, our correctness discussion focuses on demonstrating that the ILP instances obtained

from the path expressions over-approximate InterDyck-reachability. In Algorithm 2, the count
table maintains the number of unmatched open parenthesis for every sub-expression in the path

expression. Each ILP instance guarantees that the number of open parentheses is the same as the

close parentheses along any valid InterDyck-path; thus the unmatched open parentheses should

always be zero. This constraint is a necessary condition for the path to be an InterDyck-path. Thus,

the ILP solution over-approximates the InterDyck-reachability solution. The correctness of our

proposed single-source-single-target reachability algorithm follows.

4.4 Improving Parentheses Counting
If we compute InterDyck-reachability only based on ILP instances, Algorithm 2 needs to generate

an ILP instance for each sub-expression 𝑡𝑖 in the ILP standard form “𝑡1 |𝑡2 | . . . |𝑡𝑁 .” Theoretically,
the number 𝑁 can be exponentially large. Thus the approach can potentially be time-consuming.

Moreover, the parenthesis-counting formulation cannot capture parenthesis ordering in valid

Dyck- and InterDyck-paths. For example, consider a valid Dyck string “L1L2M2M1” in the parenthesis

Dyck language. Parenthesis counting cannot express the constraint that to cancel the unmatched

“L1L2”, the close parenthesis “M2” must appear before “M1.” Our algorithm integrates LCL-reachability

to address the aforementioned shortcomings. In particular, we utilize LCL-reachability to avoid

considering sub-expressions that do not contain any valid InterDyck words and reduce the number

of terms in the ILP standard form. Therefore, it improves both the precision and performance of

the parenthesis counting formulation.

Example 4.5 (Improving precision via LCL-reachability). Consider the path with the realized string

“L1J1L2M1M2K1.” The parenthesis-counting formulation cannot recognize this invalid InterDyck-path

because it does not consider the parenthesis ordering. Specifically, the close parenthesis “M1” should
not immediately follow the open parenthesis “L2.” However, by integrating LCL-reachability, we

can eliminate this invalid path. The LCL-reachability algorithm can reject this string because the

substring “L2M1” cannot be expressed by any valid LCL grammar rules. Therefore, LCL-reachability

captures some parenthesis-ordering restrictions and improves the precision of our algorithm.

However, LCL-reachability, being a graph algorithm, cannot directly work on path expressions.

To incorporate LCL reachability, our algorithm builds the derived graphs. Specifically, given a

path-expression node that represents the regular expression 𝑒 in HCAG, its derived graph is the

minimal graph with two distinct nodes 𝑠 and 𝑡 , and the path expression between them is 𝑒 . In

other words, the nondeterministic finite automaton (NFA) diagram of the path expression 𝑒 can be

regarded as the derived graph for 𝑒 .

Example 4.6 (Derived graph). Figure 5 gives the derived graph for the regular expression

“(L1J2)∗M1 (K2M1)∗,” which is similar to the corresponding NFA.

The LCL-reachability algorithm computes reachability summaries between any nodes in the

derived graphs (including 𝑠 and 𝑡 ). Every sub-expression in the HCAG corresponds to a node pair

in the derived graph. We then propagate the corresponding LCL-reachability summaries based on

a bottom-up graph traversal of the HCAG. Therefore, the LCL-reachability algorithm can use the

summaries to decide whether a particular sub-expression can belong to an InterDyck-word. If not,

the corresponding flag bad(𝑣) becomes True, and Algorithm 2 can avoid generating ILP instances

for such infeasible sub-expressions.
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5 EVALUATION
This section evaluates our single-source-single-target InterDyck-reachability algorithm based on

two client analyses. We compare the algorithm against two state-of-the-art InterDyck-reachability

algorithms, LCL-reachability [Zhang and Su 2017] and SPDS-reachability [Späth et al. 2019]. In

addition, we also compare the algorithm with two domain-specific analysis tools. The evaluation

focuses on addressing three research questions.

• RQ1: How does our algorithm compare to the state-of-the-art InterDyck-reachability algo-

rithms, in terms of performance, precision, and memory consumption?

• RQ2: How does our algorithm compare to domain-specific analysis tools?

• RQ3: Does our algorithm exhibit any exponential behavior in practice?

5.1 Experimental Setup
Benchmarks. Our evaluation is based on two suites of benchmarks.

• DDVerify benchmark. DDVerify [Witkowski et al. 2007] is a concurrent program state-

reachability analysis benchmark consisting of a set of concurrent Boolean programs with

assertions. The context-sensitive formulation of the program state reachability can be trans-

formed into an InterDyck-reachability problem on their state-transition graphs. The starting

state of the Boolean program and the state that violates an assertion can be translated as the

(source, target) node pair for single-source-single-target InterDyck-reachability.

• Demand-driven taint-analysis benchmark. The second client analysis adopts the taint-analysis
benchmark of Huang et al. [2015]. The benchmark consists of a set of Android applications

obtained from the Google Play store. For each application, there is a query between a specified

source and a specified sink for the single-source-single-target InterDyck-reachability.

Graph generation. We extract edge-labeled graphs from the two benchmark suites.

• The DDVerify benchmark consists of Boolean programs obtained via predicate abstraction.

DDVerify supports programs that use run-time thread creation. Because our algorithm only

works on finite graphs, we selected 30 Boolean programs with a fixed number of threads

and translated them into graphs for InterDyck-reachability. Nodes in the graphs represent

program states. For example, consider a programwith one Boolean variable 𝑥 and two threads.

Each node denotes a tuple (𝑣𝑥 , 𝑡1, 𝑡2) where 𝑣𝑥 represents the value of the Boolean variable 𝑥 ,

𝑡1 represents the line to be executed in the first thread, and 𝑡2 represents the line to be executed

in the second thread. Each edge represents a program state transition (𝑣𝑥 , 𝑡1, 𝑡2) → (𝑣 ′𝑥 , 𝑡 ′1, 𝑡 ′2)
after one step of execution. If the transition denotes a function call/return, the edge is labeled

by an open/close parenthesis from the Dyck language associated with the executing thread.

Therefore, for a program with 𝑡 threads, the corresponding InterDyck language represents

the interleaving of 𝑡 Dyck languages. Finally, the assertion check becomes a single-source-

single-target InterDyck-reachability query on the translated graphs.

• For the taint-analysis benchmark, we used DroidInfer [Huang et al. 2015] to produce the

interprocedural control-flow graph for each benchmark program. Nodes represent variables

in the programs, and edges represent value flows between them. We labeled the edges related

to function calls and returns with the open-parenthesis and close-parenthesis labels from

one Dyck language. We used a second Dyck language to label edges related to field writes

and reads. Therefore, each taint-analysis query becomes an instance of the single-source-

single-target InterDyck-reachability problem.
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Graph simplification. Our work focuses on InterDyck-reachability. Therefore, the graph-

simplification technique described in Li et al. [2020] is directly applicable. In our experiments, we

compare the InterDyck-reachability algorithms on both original graphs and simplified graphs.

Implementation. We implemented all algorithms in C++. The executables were compiled using

g++ with the “-O2” optimization flag. We used the Gurobi Optimizer [Gurobi Optimization, LLC

2021] as the backend ILP solver. All experiments were conducted on a server with two AMD EPYC

7402 CPUs and 512GB RAM, running Ubuntu 20.04.

Evaluated approaches. We compare our algorithm against the state-of-the-art all-pairs InterDyck-
reachability algorithms and the domain-specific analysis tools for the two benchmarks. The evalu-

ated InterDyck-reachability algorithms include LCL-reachability [Zhang and Su 2017] and SPDS-

reachability [Späth et al. 2019]. Note that the LCL-reachability algorithm only works for the all-pairs

case. For SPDS-reachability, the original demand-driven implementation is tied to the underly-

ing analysis infrastructure. Therefore, we re-implemented the all-pairs version for both. For the

domain-specific analysis, we applied CUBA [Liu and Wahl 2018] and DroidInfer [Huang et al. 2015]

to the two benchmarks, respectively. Specifically, CUBA is a static verifier for concurrent recursive

programs based on interprocedural context-unbounded analysis. It implements a semi-decision

procedure in which the number of context switches is considered to be a resource parameter.

It means that CUBA may never terminate unless an explicit context-switch bound is provided.

DroidInfer is a context-sensitive taint-analysis tool to detect privacy leaks in Android applications.

The implementations of the two domain-specific tools are publicly available.
1

5.2 RQ1: Comparisons with InterDyck-Reachability Algorithms
We first compare our single-source-single-target algorithm against two state-of-the-art all-pairs

InterDyck-reachability algorithms: LCL-reachability and SPDS-reachability. The experiments are

based on two sets of graphs: the original graphs obtained from the benchmarks and the graphs

after applying the graph simplification technique [Li et al. 2020]. The evaluation focuses on the

precision, performance, and memory consumption differences among the algorithms.

Comparison with LCL-reachability. Figure 6 portrays the results for running time and memory

consumption comparisons. In particular, Figure 6a presents a bar chart that compares the running

time of our algorithm and the LCL-reachability algorithm on the original graphs. The 𝑥-axis in

Figure 6a represents the benchmark graphs; the 𝑦-axis represents the running time comparison

of LCL-reachability (𝑇LCL) and our algorithm (𝑇 ). The ratio of 𝑇LCL and 𝑇 is proportional to the

ratio of the lengths of the bars. Thus, when the color changes at 0.5, the two algorithms take an

equal amount of time. The benchmarks are sorted according to the length of the dark bars, with the

shortest on the left. In the experiment, we set a ten-minute budget for each graph. If one algorithm

does not finish within the time limit, we regard the running time as ten minutes. We also exclude

cases that finish in less than 0.01 seconds. For both benchmarks, our algorithm runs faster than

the all-pairs LCL-reachability algorithm—the light area is smaller than the dark area. In terms of

geometric means, the running time of our algorithm is 1.42× and 1.20× faster than the all-pairs

LCL-reachability algorithms on the concurrency and taint-analysis benchmarks, respectively.

Figure 6b presents a bar chart that compares the memory usage between LCL-reachability

and our algorithm. The 𝑥-axis represents the benchmark graphs, and the 𝑦-axis represents the

comparison between LCL-reachability 𝑀LCL and our algorithm 𝑀 . The ratio of 𝑀LCL and 𝑀 is

proportional to the ratio of the lengths of the bars. If the ratio is at 0.5, the two algorithms take

1
The implementation of CUBA can be found at https://github.com/lpzun/cuba. The implementation of DroidInfer can be

found at https://github.com/proganalysis/type-inference.
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(b) Comparison of memory consumption be-
tween our algorithm and LCL-reachability.

Fig. 6. Comparisons with LCL-reachability. In each bar chart, the dotted line represents the geometric mean
of the bar length ratios.

an equal amount of memory. Our algorithm consumes less memory compared with the all-pairs

LCL-reachability algorithm because the area of the dark bars is larger than that of the light bars. In

terms of geometric means, our algorithm consumes 57% and 53% less memory than LCL-reachability

on the concurrency and taint-analysis benchmarks, respectively.

For precision comparison, our algorithm can recognize the same number of reachable node pairs

as in the concurrent program state-reachability analysis. For demand-driven taint analysis, our al-

gorithm reports 4.55% fewer reachable node pairs. Because both algorithms are over-approximation

algorithms, the 4.55% of node pairs excluded by our algorithm are all false positives.

Comparison with SPDS-reachability. Figure 7 presents the comparison results. In particular,

Figure 7a demonstrates the running time comparison. As before, the𝑥-axis represents the benchmark

graphs; the 𝑦-axis shows the comparison of our running time𝑇 and the running time𝑇SPDS of SPDS-

reachability. The experiments demonstrate that our algorithm has substantially better running

time than the SPDS-reachability algorithm because the light area in the bar chart is significantly

smaller than the dark area. For geometric means, our algorithm exhibits 28.24× and 69.9× speedup

compared with SPDS-reachability on the concurrency and taint-analysis benchmarks, respectively.

Figure 7b demonstrates the memory consumption comparison. Because all runs are performed

under a time budget, the bar charts only show results for runs in which both algorithms finished

within the time budget. In terms of geometric means, our algorithm consumes 10.4% more memory

and 59.4% less memory on the concurrency and taint-analysis benchmarks, respectively.

Our algorithm also achieves better precision results. Because both the SPDS-reachability and our

algorithm are over-approximation algorithms, an algorithm is more precise if it identifies fewer

InterDyck-reachable node pairs. In the experiments, our algorithm reports 6.7% and 11.1% fewer

reachable node pairs in the concurrency and taint-analysis benchmarks, respectively.
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Fig. 7. Comparisons with SPDS-reachability.

Comparison over simplified graphs. We also perform the comparisons based on simplified graphs

produced by Li et al. [2020]. Figure 8 presents the performance-comparison results. Again, we use

the 𝑥-axis to represent different benchmark graphs, and the 𝑦-axis to illustrate the performance

comparison. The bar charts show that our algorithm achieves a slightly better result than the all-

pairs LCL-reachability algorithm and significantly better running time than the SPDS-reachability

algorithm. In terms of the geometric mean, the speedups compared to LCL-reachability are 1.21×
and 1.11× for the two benchmarks, and the speedups compared to SPDS-reachability in two

benchmarks are 22.19× and 52.9×, respectively.

5.3 RQ2: Comparisons with Domain-Specific Analysis Tools
Besides the state-of-the-art InterDyck-reachability algorithms, we compare our algorithm with the

corresponding domain-specific analysis tools, CUBA [Liu and Wahl 2018] and DroidInfer [Huang

et al. 2015], for the two benchmarks. We report the results using geometric means.

Concurrent-program state-reachability analysis. For concurrent-program state-reachability analy-

sis, Figure 9a shows the running-time comparison between CUBA and our algorithm. The area

of the light bars is much smaller than that of the dark bars. It indicates the running time of our

algorithm is much better than that of CUBA. On average, computed as the geometric mean, our

algorithm exhibits an 11.76× speedup compared to CUBA. For precision, it is not possible to

conduct an apples-to-apples comparison between CUBA and our algorithm because CUBA is a

semi-decision procedure that reports an under-approximation of the true answer (which can be

made more precise by increasing the value of a certain resource parameter), whereas our algorithm

reports an over-approximation of the true answer.
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Fig. 8. Running-time comparisons against InterDyck-reachability algorithms on simplified graphs.

0

0.2

0.4

0.6

0.8

1

0.91

Comparison for concurrent analysis

TCUBA T

(a) Comparison of running times between
our algorithm and CUBA.

0

0.2

0.4

0.6

0.8

1

0.48

Comparison for taint analysis

TD T

(b) Comparison of running times between
our algorithm and DroidInfer.

Fig. 9. Comparisons with domain-specific tools.

Even though our algorithm and CUBA are not comparable in terms of precision, the results

for the number of reachable queries reported by CUBA can help to understand the precision of

our algorithm. In particular, for the concurrency benchmark, the number of reachable node-pair

queries reported by CUBA is around 73% of what our algorithm reports. Thus, an upper bound on

our algorithm’s false-positive rate is 37%, whereas an upper bound on the SPDS false-positive rate

is 46.1%. The CUBA precision result also provides insights into interpreting the 6.7% improvement

with respect to SPDS. Our proposed algorithm removes at least 19.7% of the false-positive results.
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Demand-driven taint analysis. Figure 9b presents a bar chart that compares the running times

of DroidInfer and our algorithm. The bar chart does not show any clear performance advantage

for either DroidInfer or our algorithm. On geometric means, our algorithm runs around 2% slower

than DroidInfer. As for precision, both the DroidInfer and our algorithm are over-approximation

algorithms. Our algorithm reports 6.8% fewer reachable node pair queries than DroidInfer. It

indicates that the proposed algorithm is more precise.

5.4 RQ3: Exponential Blow-Up in Practice
In Algorithm 2, the number of variables contributed by a single expression node to the ILP con-

straints can be exponential in the size of the regular expression. This worst-case exponential

complexity is a concern for the performance of the algorithm. In the experiments, we record the

number of variables generated for the ILP constraints for each regular-expression node (where the

regular expression is represented in ILP standard form).

Given a regular-expression node 𝑡 , let 𝑁𝑡1 be the number of variables from the node in the ILP

constraints and 𝑁𝑡2 be the number of variables from its children nodes in the ILP constraints. We

define the number of variables generated for the node 𝑡 to be |𝑁𝑡1 − 𝑁𝑡2 |. If the algorithm suffers

from an exponential blow-up, we expect the number |𝑁𝑡1 −𝑁𝑡2 | to be large. For each benchmark, we

compute the following two metrics to measure the blow-up of the generated ILP constraints. The

metrics are (i) the maximal, and (ii) the average number of variables generated for an expression

node. The maximal number of variables generated across all benchmark programs provides a

worst-case measure. The average number of variables provides an average-case measure.

For the concurrency benchmark, the maximal number of variables generated for regular-

expression nodes ranges from 4 to 29. Similarly, for the taint analysis, the maximal number of

variables generated for regular-expression nodes ranges from 3 to 24. On average, the numbers of

variables generated for regular-expression nodes are 4.3 and 7.5 for the two benchmarks, respec-

tively. These two numbers show that there does not exist an exponential blow-up in the size of

the generated ILP constraints. As a result, our algorithm does not appear to exhibit an exponential

running time in practice.

5.5 Summaries of Evaluation Results
Finally, we summarize the above experimental findings as follows.

• Comparisons with state-of-the-art InterDyck-reachability algorithm. (1) Running time: our

algorithm exhibits 1.20× and 1.42× speedup compared with all-pairs LCL-reachability on the

evaluated benchmarks, respectively. It also has achieved 28.24× and 69.9× speedup compared

with all-pairs SPDS-reachability. (2) Precision: our algorithm has achieved better precision

results compared with the LCL- and SPDS-reachability algorithms, reducing the number of

false-positive node pairs by up to 11.1%. (3) Memory consumption: our algorithm consumes

less than 50% of the memory used by the all-pairs LCL-reachability algorithm. Compared with

the SPDS-reachability algorithm, our algorithm consumes 59.4% less memory for the taint-

analysis benchmark and uses a similar amount of memory for the concurrency benchmark.

(4) On the simplified graphs produced by Li et al. [2020], our algorithm exhibits performance

improvements similar to the original graphs.

• Comparisons with domain-specific analysis tools. (1) Running time: the experiments show

that our algorithm is more than 10× faster than CUBA, and about comparable in speed

with DroidInfer. (2) Precision: it is not possible to conduct an apples-to-apples comparison

of precision between CUBA and our algorithm. Our algorithm achieves a 6.8% precision

improvement over DroidInfer on the taint-analysis benchmark.
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• Exponential worst-case growth. In our experiments, the average numbers of variables generated

from individual regular-expression nodes are 4.3 and 7.5 for the two benchmark suites. The

maximum numbers of variables across all programs in the two benchmark suites are 29

and 24 for concurrency analysis and taint analysis, respectively. These numbers show that

even though the theoretical worst case is exponential growth, the growth in the numbers of

variables are still small in practice.

6 RELATEDWORK
6.1 Language Reachability for Static Analysis
Formal-language reachability is one of themost popular formulations for static-analysis applications.

Context-free language (CFL) reachability is one of the oldest formulations. Yannakakis [1990]

proposed formal-language reachability (Definition 3.3) as a graph-theoretic approach to certain

database problems. The relevance of CFL-reachability for program analysis was developed in a series

of papers by Reps and collaborators [Melski and Reps 2000; Reps 1998; Reps et al. 1995]. It is now

applied in many client applications such as shape analysis [Reps 1998], constant propagation [Sagiv

et al. 1995], and pointer analysis [Feng et al. 2015].

6.2 InterDyck-Reachability
Dyck-language reachability [Kodumal and Aiken 2004] is a widely used variant of CFL-reachability

because Dyck languages canmodel parenthesis-matching properties such as call/return, lock/unlock,

or write-data/read-data. To achieve higher precision, it is natural to use InterDyck-reachability [Li

et al. 2020; Reps 2000] for formulating static-analysis problems that model multiple parenthesis-

matching properties simultaneously. However, the InterDyck-reachability problem is undecidable

in general [Reps 2000]. Many approaches have been proposed to over-approximate InterDyck-

reachability, including the three approaches discussed in the paper: CFL-reachability [Reps 1998],

SPDS-reachability [Späth et al. 2019], and LCL-reachability [Zhang and Su 2017]. Li et al. [2020]

propose a graph-simplification algorithm for InterDyck-reachability. The simplification algorithm

can remove edges that do not contribute to InterDyck-paths, thus improving both the performance

and the precision of existing InterDyck-reachability algorithms in practice.

Some special cases for InterDyck-reachability are also studied in the literature. Consider the

InterDyck-language 𝐿 = 𝐷1 ⊙ 𝐷1 where 𝐷1 is the Dyck language of one parenthesis type. Its reach-

ability problem on bidirected graphs, where every open-parenthesis edge 𝑢
L𝑖−→ 𝑣 is accompanied

by a reverse edge 𝑣
M𝑖−→ 𝑢, has been shown to be in polynomial time [Li et al. 2021]. More recently,

the bidirected 𝐷𝑘 ⊙ 𝐷1-reachability problem has shown to be decidable, where 𝐷𝑘 represents the

Dyck language of 𝑘 different parentheses [Kjelstrøm and Pavlogiannis 2022].

6.3 Parikh Image and Vector Addition Systems with States
Our work formulates the single-source-single-target InterDyck-reachability problem as a

parenthesis-counting problem. In formal-language theory, the idea of letter counting can be

formulated using the concept of Parikh images [Parikh 1966]. Given a word 𝑤 ∈ Σ∗, where
Σ = {𝛼1, · · · , 𝛼𝑘 }, let |𝑤 |𝛼𝑖 denote the number of occurrences of 𝛼𝑖 in 𝑤 . Then the Parikh image

of 𝑤 is a tuple ( |𝑤 |𝛼1
, · · · , |𝑤 |𝛼𝑘 ). Parikh images have been extensively studied in the literature.

A seminal result shows that the Parikh images of context-free languages are semilinear sets, and

thus they can be encoded using Presburger arithmetic [Parikh 1966]. Later work has focused

on providing systematic Presburger-arithmetic encodings of Parikh images [Esparza 1997; Seidl

et al. 2004; Verma et al. 2005]. In InterDyck-reachability, the numbers of open parentheses and
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close parentheses in any valid InterDyck-paths should be the same. Consequently, the Parikh

image of the realized string of a valid InterDyck-path should be an all-zeros vector. However,

all-zeros Parikh-image reachability does not precisely model the parenthesis-counting formulation

of InterDyck-reachability, because InterDyck-reachability requires that there must always be more

open parentheses than close parentheses (of a given type) along a valid InterDyck-path. In addition,

our algorithm captures the parenthesis ordering by combining ILP solving and the LCL-reachability

algorithm. An example illustrating the differences can be found in Example 4.5.

Another related formulation is the reachability problem for vector addition systems with states

(VASS) [Hopcroft and Pansiot 1979]. VASS with 𝑑 counters (𝑑-dimensional VASS) can simulate

parenthesis counting for an InterDyck-language consisting of at most 𝑑 𝐷1 languages, i.e., reacha-
bility for 𝑑-dimensional VASS can precisely capture 𝐷1 ⊙ 𝐷1 · · · ⊙ 𝐷1-reachability (the number of

instances of 𝐷1 is 𝑑). VASS-reachability can serve as an over-approximation of a general InterDyck-

reachability problem: a language 𝐷𝑘 can be approximated as 𝐷1 by treating all open-parenthesis

symbols as a single open-parenthesis symbol, and all close-parenthesis symbols as the corre-

sponding single close-parenthesis symbol. By treating each Dyck language this way, a general

InterDyck-reachability problem is turned into 𝐷1 ⊙ 𝐷1 · · · ⊙ 𝐷1. VASS-reachability has been exten-

sively studied in the literature [Englert et al. 2016; Ganardi et al. 2022; Schmitz 2016]. However, the

VASS-reachability problem is well-known to be a hard problem. Even the two-dimensional The

VASS-reachability problem is PSPACE-complete [Blondin et al. 2021], and thus a precise algorithm

for the VASS-reachability problem is unlikely to be efficient in practice. Note that when discussing

the complexity of two-dimensional VASS-reachability, there exist two problem encoding schemas:

unary encoding [Englert et al. 2016] and binary encoding [Blondin et al. 2021]. VASS-reachability

serves as an over-approximation of InterDyck-reachability in binary encoding.

7 CONCLUSION
This paper has proposed a new single-source-single-target InterDyck-reachability algorithm. Specif-

ically, it formulates InterDyck-reachability as a parenthesis-counting problem over path expres-

sions. We have implemented the algorithm and evaluated it on two client analyses. The exper-

imental results demonstrate that the algorithm is 1.5× faster than the state-of-the-art all-pairs

LCL-reachability and can achieve an order-of-magnitude speedup compared to all-pairs SPDS-

reachability. Furthermore, it can reduce the number of false-positive node pairs in LCL-reachability

and SPDS-reachability algorithms. Finally, it also can achieve better running time compared with

two domain-specific analysis tools over the corresponding benchmarks.
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