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ABSTRACT

SMT solvers are fundamental tools for reasoning about constraints

in practical problems like symbolic execution and program synthe-

sis. Faster SMT solving can improve the performance and preci-

sion of those analysis tools. Existing approaches typically speed

up SMT solving by developing new heuristics inside particular

solvers, which requires nontrivial engineering efforts. This paper

presents a new perspective on speeding up SMT solving. We pro-

pose SMT-LLVM Optimizing Translation (SLOT), a solver-agnostic

pre-processing approach that utilizes existing compiler optimiza-

tions to simplify SMT problem instances. We implement SLOT

for the two most application-critical SMT theories, bitvectors, and

floating-point numbers. Our extensive evaluation based on the

standard SMT-LIB benchmarks shows that SLOT can substantially

increase the number of solvable SMT formulas given fixed timeouts

and achieve mean speedups of nearly 3× for large benchmarks.
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• Software and its engineering→ Formal software verifica-
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1 INTRODUCTION

Satisfiability Modulo Theories (SMT) constraints are first-order

logical formulas with functions and variables from various theories,

such as real numbers, integers, and, as relevant to software engineer-

ing, bitvectors, and floating-point numbers. State-of-the-art solvers

like CVC5 [2] and Z3 [15] use a complex mix of heuristics, theory-

specific engines, and SAT solver calls to efficiently reason about

SMT constraints. Yet many constraints still take a prohibitively long

time to solve. Improving solver performance can improve results

for real-world applications. For example, in symbolic execution,

lower solving time equates to greater code coverage [12].
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The most popular approach to speeding up SMT solving is de-

veloping more powerful solving strategies. These have sometimes

taken the form of new solvers like Boolector [36], or of new algo-

rithms in existing solvers. For example, Berzish et al. [6] introduce

new heuristics for string constraints involving regular expressions

while Bjørner et al. [7] improve Z3’s performance for custom theo-

ries. FastSMT [1] speeds up solving by using machine learning to

choose the best solver heuristics.

This paper proposes a new perspective on improving SMT solv-

ing: instead of developing more advanced solving tactics, our key

insight is to repurpose existing compiler optimization techniques

to the SMT problem. In particular, we propose a translation-based

pre-processing step, SMT-LLVM Optimizing Translation (SLOT),

which can directly optimize input SMT-LIB formulas. Conceptually,

our approach has three main advantages:

• Simplicity: End-users of SMT solvers can benefit from com-

piler optimizations as a black box, without detailed knowl-

edge of SMT-specific optimizations.

• Solver-independence: Because it is a pre-processing step

on SMT constraints, semantics-preserving optimization can

be used in applications that use any solver(s).

• Extensibility: New compiler optimizations can be directly

applied to further improve SMT solving without the need to

make complex changes to solvers.

SLOT bypasses the need to re-implement compiler optimizations

in SMT solvers by translating the constraints, rather than the op-

timizations. While not all compiler optimizations are useful for

the SMT context, the combination of semantics-preserving opti-

mization with existing solvers creates a sieve: some constraints

are caught quickly by existing solver heuristics, while others are

handled better by SLOT.

We have implemented SLOT for the SMT theories of bitvectors

and floating-point numbers. Constraints in these theories are the

most relevant to software engineering because they model ma-

chine arithmetic; for example, they are used in practical tools for

symbolic execution [12], translation validation [26], and program

synthesis [8]. In Section 4, we show that the semantics of these two

theories can be exactly represented in LLVM IR. The key challenge

for SLOT is bridging the semantic gap between SMT constraints and

LLVM IR which exists because the languages, one declarative and

the other imperative, were designed for entirely different purposes.

Figure 1 illustrates the three components of SLOT. The frontend

translates SMT constraints to LLVM IR. This step ensures that every

SMT function is converted to an equivalent sequence of LLVM

instructions. Optimization uses the LLVM optimizer to simplify

the translated constraint almost for free. Finally, SLOT’S backend

translates the optimized LLVM IR back into an SMT constraint. The

complex structures created by the optimizer must be translated

back without semantic gaps.

https://doi.org/10.1145/3611643.3616357
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Figure 1: Overview of SLOT’s translation and optimization

process. The output constraint (SMT’) is satisfiable if and

only if the original constraint (SMT) is satisfiable.

We have applied SLOT to the quantifier-free benchmarks for

bitvectors, floating-point numbers, and their combination included

in the SMT-LIB specification [3]. Our extensive evaluation demon-

strates that SLOT can substantially speed up SMT solving, especially

for complex constraints which would otherwise take a long time to

solve. Our approach increases the number of solvable constraints

by up to 20% for bitvector, 15% for floating-point, and 80% for mixed

benchmarks. Moreover, SLOT is more effective than existing solvers

combined: it can solve constraints for which all tested solvers time

out. We also observe mean speedups above 2× for bitvector and

floating-point, and as high as 3× for mixed constraints. By measur-

ing which optimization passes contribute most to the speedup, we

find that simple peephole optimizations and global value numbering

are sufficient to improve solver performance.

In summary, we make the following primary contributions:

• We present an easy-to-use, solver-agnostic framework for

speeding up SMT solving by translating constraints to a

compiler IR and back.

• We define, prove, and implement SLOT, and show that it im-

proves the performance of solvers on standard benchmarks.

• We measure which LLVM optimization passes contribute

most to speeding up SMT formulas, giving users access to

well-tested simplifications and solver developers insight into

possible solver improvements.

The rest of the paper is structured as follows. Section 2 moti-

vates SLOT with an example SMT constraint. Section 3 presents

background on constraints in SMT-LIB, while Section 4 describes

SLOT’s translation and proves its fidelity. Section 5 describes the

evaluation results, and Section 6 puts the results in context. Finally,

Section 7 surveys related work, and Section 8 concludes.

2 MOTIVATING EXAMPLE

This section presents a concrete example (Figure 2) to motivate

SLOT. Specifically, it takes Z3 390 seconds to solve the original

formula (Figure 2a). After applying SLOT, the optimized formula

(Figure 2d) can be solved almost instantly.

Input SMT constraint. Figure 2a gives an SMT formula from the

SMT-LIB QF_BV benchmark set.
1
It checks whether multiplication

can overflow (lines 3-7) when the inputs 𝑎 and 𝑏 are subject to a

division constraint (line 8). The formula is unsat because any value

of 𝑎 which satisfies the second assertion causes the multiplication

𝑎×𝑏 to overflow. Even though this constraint is concise and simple,

Z3 takes 390 seconds to return the unsat result.

1
QF_BV/challenge/multiplyOverflow.smt2

1 (declare -fun a () (_ BitVec 32))
2 (declare -fun b () (_ BitVec 32))
3 (assert (not (=
4 ((_ extract 63 32)
5 (bvmul ((_ zero_extend 32) a)
6 ((_ zero_extend 32) b)))
7 #x00000000)))
8 (assert (bvuge (bvudiv #xffffffff a) b))
9 (check -sat)

(a) Original SMT-LIB constraint.

1 define i1 @SMT(i32 %a, i32 %b) {
2 %0 = zext i32 %b to i64
3 %1 = zext i32 %a to i64
4 %2 = mul i64 %1, %0
5 %3 = lshr i64 %2, 32
6 %4 = trunc i64 %3 to i32
7 %5 = icmp eq i32 %4, 0
8 %6 = xor i1 %5, true
9 %7 = udiv i32 -1, %a
10 %8 = icmp eq i32 %a, 0
11 %9 = select i1 %8, i32 -1, i32 %7
12 %10 = icmp uge i32 %9, %b
13 %11 = and i1 %6, %10
14 ret i1 %11
15 }

(b) Result of SLOT frontend translation.

1 define i1 @SMT(i32 %a, i32 %b) {
2 ret i1 false
3 }

(c) Result of SLOT optimization.

1 (assert false)
2 (check -sat)

(d) Final formula after SLOT backend translation.

Figure 2: SLOT translation and optimization process.

Frontend. Figure 2b gives the result of SLOT’s frontend: an LLVM

function that is semantically equivalent to the SMT constraint in

Figure 2a. This function returns true on an input (𝑎, 𝑏) if and only

if (𝑎, 𝑏) satisfies the original constraint. Its instructions mirror the

function applications in Figure 2a. For example, zext is equivalent

to the SMT zero_extend operation and mul is equivalent to bvmul.

Optimization. Figure 2c gives the result of LLVM optimization

on the function in Figure 2b using all available optimization passes.

In this example, only three passes affect the function’s instruc-

tions: instcombine, reassociate, and dce. These simplify away all

substantive code, producing the function that always returns false.

Backend. Finally, Figure 2d shows the result of translating Fig-

ure 2c back to an SMT constraint. Since the LLVM function always

returns false, the corresponding SMT constraint simply asserts fal-

sity. Z3 can now trivially produce the unsat result in 0.02 seconds.

Challenges. From Figure 2, we can see that SLOT allows an SMT

solver to leverage the power of existing LLVM optimizations. The

key technical challenge of SLOT is bridging the semantic gap be-

tween SMT constraints and LLVM IR, i.e., ensuring the input and

output SMT constraints are equivalent. While multiplication and

bit extension are equivalent in the two languages, SMT functions

cannot always be directly mapped to LLVM IR. For example, line 10

of Figure 2b adds a check to ensure the division on line 8 of Figure 2a

does not introduce division by zero, because this has undefined

behavior in LLVM.
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3 PRELIMINARIES

This section gives background on the SMT problem [4] and de-

scribes the bitvector and floating-point theories of the SMT-LIB

standard [3].

Definition 1 (SMT formula). Given a theory 𝑇 with signature

Σ and interpretations 𝐼 , an SMT formula 𝜙 is an expression made up

of symbols (function applications or variables) from Σ. 𝐼 is the set of
maps from variables in Σ to sort-appropriate values. 𝜙 is satisfiable if

there exists an interpretation in 𝐼 that satisfies 𝜙 .

Intuitively, a theory 𝑇 provides definitions of sorts (i.e., types)

and functions, and an SMT formula is a set of variables and a con-

straint on those variables using functions from 𝑇 . If there exists an

assignment of the variables which fulfills the constraint, we call the

formula sat; otherwise, it is unsat. The SMT-LIB standard defines

eight theories and from these 29 logics, combinations of functions

from one or more theories, possibly with extensions. All logics

rely on the Core theory, which defines basic boolean operations

like logic and, logic or, and equality. We restrict our discussion

to the Core theory and the quantifier-free logics of bitvectors and

floating-point numbers.

SMT-LIB has a sort for each width of bitvector ((_ BitVec 𝑛)),
several unary and binary operations on bitvectors like bvneg and

bvadd, and bitvector comparisons like bvuge. The theory of floating-

point numbers defines the sorts (_ FloatingPoint 𝑒 𝑠 ) for integers
𝑒, 𝑠 > 1. Operations on floating-point values follow standard IEEE-

754 semantics [35], though the sizes of the exponent and significand

are not limited to those defined in IEEE-754. As with the bitvec-

tor logic, there are unary and binary operations on floating-point

values (many of these require the specification of one of the five

rounding modes) and comparisons that yield booleans. There are

also conversions from floating-point to bitvectors, from bitvectors

to floating-point values, and between different-size floating-point

values. Table 1 gives a full list of QF_BV and QF_FP functions.

Following the work of Kroening and Strichman [21], we summa-

rize Table 1 using the grammar shown in Figure 3. The grammar

consists of formulas (𝐹 ), bitvector comparisons (𝐵), floating-point

comparisons (𝐶), bitvector values (𝑉 ), and floating-point values (𝑊 ).

Intuitively, formulas are expressions with boolean sort; bitvector

and floating-point comparisons are expressions of boolean sort

which take bitvector or floating-point expressions, respectively;

and values are expressions of bitvector or floating-point sort.

4 SLOT: SMT-LLVM OPTIMIZING

TRANSLATION

This section formalizes the translation described in Section 2 and

presents proofs of semantics preservation for bitvectors and floating-

point values.

4.1 Overview

Given an SMT constraint 𝐶 , SLOT translates each operation to an

LLVM equivalent, creating an LLVM function 𝐿. It then invokes

the LLVM optimizer, producing an optimized function 𝐿′. Finally, it
translates back into an SMT constraint 𝐶′. Intuitively, equivalence
between 𝐶 and 𝐶′ means that their sets of satisfying assignments

are equal. Equivalence between a constraint and an LLVM function

Table 1: List of functions in the bitvector and floating-point

theories by type. We abbreviate bitvectors BV, floating-point

values FP, and rounding modes RM. 𝐴 represents any type. “*”

indicates a function parameterized by integer constants, “†”
indicates a function that changes bit widths.

Function sort QF_BV and QF_BVFP functions

Bool→ Bool not
Bool × Bool→ Bool ⇒, and, or, xor
𝐴 × 𝐴→ Bool =, distinct
Bool × 𝐴 × 𝐴→ 𝐴 ite
BV × BV→ Bool bvule, bvsle, bvuge, bvsge, bvult, bvslt, bvugt,

bvsgt

BV→ BV bvnot, bvneg, extract∗† , repeat∗† , zero_extend∗† ,
sign_extend∗† , rotate_left∗ , rotate_right∗

BV × BV→ BV concat† , bvadd, bvsub, bvmul, bvsdiv, bvudiv,
bvsrem, bvurem, bvsmod, bvand, bvor, bvnot, bvxor,
bvnand, bvnor, bvxnor, bvshl, bvlshr, bvashr,
bvcomp

FP→ Bool fp.isNaN, fp.isInfinite, fp.isZero, fp.isNormal,
fp.isSubnormal, fp.isNegative, fp.isPositive

FP × FP→ Bool fp.eq, fp.lt, fp.gt, fp.leq, fp.geq
FP→ FP fp.neg, fp.abs

RM × FP→ FP fp.sqrt, to_fp∗† , fp.roundToIntegral
FP × FP→ FP fp.rem, fp.min, fp.max
RM × FP × FP→ FP fp.add, fp.sub, fp.mul, fp.div
RM × FP × FP × FP→ FP fp.fma
BV→ FP to_fp∗

BV × BV × BV→ FP fp∗

RM × BV→ FP to_fp∗† , to_fp_unsigned∗†

RM × FP→ BV fp.to_ubv∗† , fp.to_sbv∗†

𝐹 := true | false | 𝐶 | (not 𝐹 ) | (⇒ 𝐹 𝐹 ) |
(and 𝐹 𝐹 ) | (or 𝐹 𝐹 ) | (xor 𝐹 𝐹 ) | (= 𝐹 𝐹 ) |
(distinct 𝐹 𝐹 ) | (ite 𝐹 𝐹 𝐹 )

𝐵 := (=𝑉 𝑉 ) | (distinct𝑉 𝑉 ) | (bvc𝑉 𝑉 )
𝐶 := (=𝑊 𝑊 ) | (distinct𝑊 𝑊 ) | (fpc𝑉 𝑉 ) |

(fp.isclass𝑊 )
𝑉 := Constant | Symbol | (ite 𝐹 𝑉 𝑉 ) | (bvop1𝑉 ) |

(bvop2𝑉 𝑉 ) | (fp.to_ubv𝑊 ) | (fp.to_sbv𝑊 )
𝑊 := Constant | Symbol | (fp.fma𝑊 𝑊 𝑊 ) |

(fpop1𝑊 ) | (fpop2𝑊 𝑊 ) | (to_fp𝑉 ) |
(to_fp_unsigned𝑉 ) | (fp𝑉 𝑉 𝑉 )

Figure 3: The grammar of constraints in the QF_BV and QF_BVFP

logics. bvc is any of the bitvector comparisons from Table 1.

fpc means any of the floating-point comparisons, and class

means any of the floating-point class operations. bvop1 and

bvop2mean any of the unary and binary bitvector operations,

respectively, and the same for fpop1 and fpop2.

means that, given a variable assignment, evaluating the constraint

produces the same result as executing the LLVM function.

Algorithm 1 performs the translation from an SMT-LIB con-

straint𝐶 into an LLVM function 𝐿. Each function recursively builds

the LLVM statements corresponding to an SMT expression. The

GetLLOp function represents fetching an LLVM instruction or in-

structions which have the same effect as the input SMT operation

𝐶op . The variables of 𝐶 are converted to arguments of 𝐿.

Optimization from 𝐿 to 𝐿′ is performed by the LLVM optimizer.

For black-box style processing of SMT constraints, SLOT uses all

the passes included in LLVM’s O3 optimization level. However, not
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Algorithm 1: SLOT frontend translation.

Data: C, a constraint with function𝐶op , children𝐶0,𝐶1, . . .

Result: L, an LLVM function

Function BuildLLVM(C):
if C is an FP comparison then

return BuildComparison(FP, C);

else if C is a BV comparison then

return BuildComparison(BV, C);

else if C is a leaf then

return C as boolean constant;

else return GetLLOp(𝐶op , BuildLLVM(𝐶0), BuildLLVM(𝐶1));

Function BuildComparison(T, C):
return GetLLOp(𝐶op , BuildVal(T,𝐶0), BuildVal(T,𝐶1));

Function BuildVal(T, C):
if C is a leaf then

return C as a T constant;

else if C is an FP conversion then

return GetLLOp(𝐶op ,BuildVal(BV,𝐶0))

else if C is a BV conversion then

return GetLLOp(𝐶op ,BuildVal(FP,𝐶0))

else if C is ite then

return Select(BuildVal(Bool,𝐶0), BuildVal(T,𝐶1),
BuildVal(T,𝐶2));

else return GetLLOp(𝐶op , BuildVal(T,𝐶0), BuildVal(T,

𝐶1));

all optimization passes are relevant to SLOT’s translation (for in-

stance, SLOT does not introduce any memory operations). Section 5

discusses in detail which LLVM passes are most important for SLOT.

Finally, we translate 𝐿′ back into an SMT constraint 𝐶′ with
Algorithm 2. This translation is straightforward; we proceed along

the 𝐿′ syntax tree and convert each instruction to its equivalent

SMT-LIB function as in Algorithm 2. Because frontend translation,

optimization, and backend translation all preserve the semantics of

the constraint, we can then use the satisfiability of 𝐶′ as a proxy
for the satisfiability of 𝐶—this property is formalized in Theorem 1.

The key challenge of translation is defining GetLLOp without in-

troducing undefined behavior. Some functions can be translated

one-to-one, but bitvector division, shifts, and floating-point com-

parisons have subtly different semantics in LLVM and SMT-LIB. In

addition, some SMT operations have no direct LLVM equivalent

and vice versa, requiring their semantics to be built from existing

operations in each language.

4.2 Frontend translation

Types. Let𝐶 be an SMT constraint over variables 𝑐1, 𝑐2, . . . , 𝑐𝑛 . The

possible sorts of a variable 𝑐𝑖 are boolean, bitvector, and floating-

point. An SMT-LIB boolean is equivalent to the LLVM i1 type. An

𝑛-wide bitvector is equivalent to the LLVM type i𝑛. The SMT-LIB

floating-point sorts (_ FloatingPoint 5 11) , (_ FloatingPoint 8 24) ,
(_ FloatingPoint 11 53) , and (_ FloatingPoint 15 113) are respec-
tively equivalent to LLVM’s half, float, double, and fp128 types.

SMT-LIB supports floating-point values of arbitrary width (and

even of arbitrary exponent and significand widths), but LLVM sup-

ports only a few fixed floating-point widths. We, therefore, limit our

translation to the standard 16-, 32-, 64-, and 128-bit floating-point

types with exponent and significand sizes listed above.

Algorithm 2: SLOT backend translation.

Data: L, an LLVM function

Result: C, an SMT constraint

Function BuildSMT(L):
𝑉 ← 𝐿.𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡𝑠 ;

return ConvertVal(V, L.return);

Function ConvertVal(Vars, Value):
if Value in Vars then

return GetSMTVar(Value);

else if Value is a constant then

return GetSMTConst(Value);

else if Value is icmp then
return GetSMTBvComp(ConvertVal(Vars, Value.op(0)),
ConvertVal(Vars, Value.op(1)));

else if Value is fcmp then
return GetSMTFloatComp(ConvertVal(Vars, Value.op(0)),
ConvertVal(Vars, Value.op(1)));

else if Value is an intrinsic call then

return GetSMTIntrinsic(ConvertVal(Vars, Value.op(0)),
. . .);

else

return GetSMTOp(ConvertVal(Vars, Value.op(0)),
ConvertVal(Vars, Value.op(1)));

Example 1. An SMT constraint 𝐶 with variables

(declare -fun a () Bool)
(declare -fun b () (_ BitVec 64))
(declare -fun c () (_ FloatingPoint 8 24))

is translated to an LLVM function with the following signature:

define i1 @C(i1 %a, i64 %b, float %c).

Variables and constants. During frontend translation, we give

variables the same names in 𝐿 as in 𝐶 . It is also straightforward

to translate boolean and bitvector constants, which have the same

representation in LLVM as in SMT-LIB. The floating-point values

±0, ±∞, and NaN are translated to their LLVM representations; all

other floating-point values are constructed from bitvectors.

Simple operations. Many operations have the same semantics

in LLVM and SMT-LIB; we list these here without detailed proof.

SLOT translates these operations by simply applying the equivalent

LLVM operation to the same arguments.

• The boolean functions and, or, and xor have the same names

and semantics in LLVM and SMT-LIB. (⇒ 𝑎 𝑏) is reduced
to (or (not 𝑎) 𝑏).
• Bitvector and floating-point comparisons (including = for

bitvectors and fp.eq for floating-point) are equivalent to

the LLVM icmp and fcmp instructions with the appropriate

condition codes (ordered for floating-point).

• The SMT-LIB function ite is equivalent to LLVM select.

• Zero extension and sign extension are equivalent in SMT-LIB

and LLVM.

• The bitvector math operations bvadd, bvsub, and bvmul and

foating point math operations fp.neg, fp.add, fp.sub, fp.mul,

fp.div, and fp.rem have the same semantics as the similarly

named LLVM instructions.

• The SMT-LIB not and bvnot operations are equivalent to the

LLVM xor instruction with the second argument having all

bits set (i.e., −1).
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1 %zero = icmp eq i𝑛 %b, 0
2 %div = udiv i𝑛 %a, %b
3 %out = select i1 %zero , i𝑛 -1, i𝑛 %div

(a) LLVM equivalent of (bvudiv 𝑎 𝑏 ) .
1 %zero = icmp eq i𝑛 %b, 0
2 %neg = icmp slt i𝑛 %a, 0
3 %const = select i1 %neg , i𝑛 1, i𝑛 -1
4 %div = sdiv i𝑛 %a, %b
5 %out = select i1 %zero , i𝑛 %const , i𝑛 %div

(b) LLVM equivalent of (bvsdiv 𝑎 𝑏 ) .
1 %zero = icmp eq i𝑛 %b, 0
2 %rem = {u, s}rem i𝑛 %a, %b
3 %out = select i1 %zero , i𝑛 %a, i𝑛 %rem

(c) LLVM equivalent of (bv{u,s}rem 𝑎 𝑏 ) .

Figure 4: LLVM equivalents of SMT-LIB division and remain-

der.

• to_fp on a single bitvector argument is equivalent to the

LLVM bitcast instruction. to_fp on a floating-point argu-

ment is equivalent to either fpext or fptrunc, depending on

the relative widths. to_fp on a rounding mode and a bitvec-

tor (i.e., signed numeric conversion to floating-point) has the

same semantics as sitofp in LLVM. Similarly, to_fp_unsigned

is equivalent to uitofp.

• The SMT-LIB conversions fp.to_ubv and fp.to_sbv are equiv-

lent to the LLVM instructions fptoui and fptosi, respec-

tively.

In addition to functions with equivalent LLVM instructions, we

express several SMT-LIB functions using LLVM intrinsics. These

are common LLVM functions invoked using the call ⟨intrinsic⟩
syntax. In the context of SLOT, there is no cost to using intrinsics

instead of instructions, as we do not use the LLVM IR to generate a

binary.

• SMT-LIB bit rotation is equivalent to LLVM’s funnel shift

intrinsics. For example, ( (_ rotate_left 𝑖 ) 𝑎) becomes call

i𝑛 @llvm.fshl.i𝑛(i𝑛 %a, i𝑛 %a, i𝑛 𝑖).

• Floating-point fused multiply-add (FMA), square root, and

absolute value have the same names and semantics in SMT-

LIB and LLVM (as intrinsics).

• fp.min and fp.max are equivalent to the llvm.minnum and

llvm.maxnum intrinsics, respectively. These match the SMT-

LIB semantics in that if one argument is NaN, the other argu-

ment is returned.

• The SMT-LIB floating-point class predicates like fp.isNaN,

fp.isInfinite, etc. are equivalent to the llvm.is.fpclass

intrinsic. This intrinsic takes a bitmask representing which

classes to check for–each of the SMT-LIB predicates can be

represented with the flags.

Division and bit shifting. There are several functions whose

SMT-LIB and LLVM versions differ in subtle ways because of un-

defined behavior. In SMT-LIB, bitvector division by 0 is defined

as a fixed value depending on the dividend. In LLVM, it produces

a poison value, which is propagated by the optimizer through all

subsequent operations. To build an equivalent series of LLVM in-

structions, we must add a check for this case.

1 %wide = icmp uge i𝑛 %b, 𝑛
2 %shift = shl i𝑛 %a, %b
3 %out = select i1 %wide , i𝑛 0, i𝑛 %shift

(a) LLVM equivalent of (bvshl 𝑎 𝑏 ) .
1 %wide = icmp uge i𝑛 %b, 𝑛
2 %shift = lshr i𝑛 %a, %b
3 %out = select i1 %wide , i64 0, i𝑛 %shift

(b) LLVM equivalent of (bvlshr 𝑎 𝑏 ) .
1 %wide = icmp uge i𝑛 %b, 𝑛
2 %neg = icmp slt i𝑛 %a, 0
3 %const = select i1 %neg , i𝑛 -1, i𝑛 0
4 %shift = ashr i𝑛 %a, %b
5 %out = select i1 %wide , i𝑛 %const , i𝑛 %shift

(c) LLVM equivalent of (bvashr 𝑎 𝑏 ) .

Figure 5: LLVM equivalents of SMT-LIB shift.

1 %bca = bitcast float %a to i𝑛
2 %bcb = bitcast float %b to i𝑛
3 %nana = call i1 @llvm.is.fpclass.f𝑛(fp %a, i32 3)
4 %nanb = call i1 @llvm.is.fpclass.f𝑛(fp %b, i32 3)
5 %both = and i1 %nana , %nanb
6 %eq = icmp eq i𝑛 %bca , %bcb
7 %out = or i1 %both , %eq

Figure 6: LLVM equivalent of (= 𝑎 𝑏) for floating-point val-
ues. fp indicates half, float, double, or fp128 with width 𝑛. The

constant i32 3 indicates a check for NaN.

Figure 4 shows the frontend translation of the four SMT-LIB

bitvector division and remainder operations. In each case, SLOT

adds a check comparing the divisor to zero, and then chooses either

the result of an LLVM math operation or a constant as defined in

the SMT-LIB standard. Signed division (Figure 4b) may produce

either 1 or −1 depending on the signs of the inputs. The bvsmod

operation is translated to a computation in terms of urem.

In addition to different handling of division by 0, LLVM and

SMT-LIB have different semantics for bitvector shift operations. In

LLVM, shifts by the bit width or more have undefined behavior. In

SMT-LIB, they always result in a bitvector of all 0s or all 1s (in the

case of arithmetic shift right of a negative value). The translations

of these three shift operations are shown in Figure 5.

Floating-point equality. LLVM floating-point math does not

have undefined behavior as in the integer case, but we must handle

two distinct notions of equality: fp.eq and “=”. The function fp.eq

checks for floating-point equality in the IEEE sense; it has the

same semantics as LLVM’s fcmp oeq. SMT-LIB “=”, on the other

hand, is a core theory operation that checks for the equality of two

SMT expressions. Unlike IEEE-754, every value must be uniquely

represented in SMT-LIB, so there is one NaN “object” which is equal

to any other NaN. In all other cases, “=” means bitwise equality–this

translation is shown in Figure 6.

Changing bit widths. There are three bitvector operations that

change the bit widths of their arguments: concatenation (combining

multiple bitvectors), repeat (repeating a single bitvector a constant

number of times), and bit extraction. Each of these operations is

translated to a sequence of LLVM instructions that simulate their

semantics. Suppose we have a bitvector 𝑎 of length 𝑛 and want
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1 %zsg = zext i1 %sign to i𝑛
2 %zex = zext i𝑒 %exp to i𝑛
3 %zsi = zext i𝑠 %sig to i𝑛
4 %ssg = shl i𝑛 %zsg , 𝑛 − 1

5 %sex = shl i𝑛 %zex , 𝑒
6 %right = or i𝑛 %sex , %zsi
7 %all = or i𝑛 %ssg , %right
8 %out= bitcast i𝑛 %all to fptype

Figure 7: LLVM equivalent of (fp sign exp sig). 𝑛 is the width

of the floating-point values, 𝑒 is the width of the exponent,

and 𝑠 is the width of the significand. fptype may be any of

half, float, or double.

to extract the bits from 𝑖 down to 𝑗 (both inclusive in SMT-LIB).

Intuitively, to extract this portion of 𝑎, we move the bits of interest

to the right end of the bitvector (a shift by 𝑗 ), and then truncate to

the appropriate size (𝑖 − 𝑗 + 1).
Concatenation involves extending both arguments to the new

width, shifting one into the newly-added all-zero bits of the other,

and then combining with bitwise or. The SMT-LIB ((_ repeat 𝑛) a)

operation is translated by chaining multiple concatenations. The

number of repetitions is a constant parameter, and is therefore

known statically. The translations of concatenation and repetition

may add redundant overhead for some inputs, but any such over-

head is eliminated during the optimization phase.

Floating-point construction. The SMT-LIB floating-point con-

structor fp takes a bitvector each for the sign, exponent, and sig-

nificand and returns a floating-point value. In LLVM, we need to

concatenate (shift and bitmask) the three parts and interpret (i.e.,

bitcast) the result as a floating-point value. This translation is

shown in Figure 7.

Rounding modes. SMT-LIB defines five separate floating-point

rounding modes: roundNearestTiesToEven, roundNearestTiesToAway,

roundTowardPositive, roundTowardNegative, and roundTowardZero.

These modes specify the semantics of floating-point operations

like addition and subtraction when rounding is required. By default,

LLVM floating-point instructions follow round to nearest with ties

to even, so SLOT translates SMT function applications with this

rounding mode directly to LLVM instructions. For other round-

ing modes, the tool must generate an LLVM call to a constrained

floating-point intrinsic in LLVM, which in most cases allows the

specification of rounding mode.

Example 2. The SMT operation with 32-bit floating-point variables

𝑎 and 𝑏

(fp.add roundTowardPositive a b)

is translated to the following:

call float @llvm.experimental.constrained.fadd.f32(
float %a, float %b, metadata !"round.upward",
metadata !"fpexcept.ignore")

However, constrained floating-point intrinsics do not exist for

all SMT-LIB operations; in these cases, SLOT chooses the correct in-

trinsic based on rounding mode. For example, SMT-LIB conversion

from floating-point to signed bitvector (fp.to_sbv) becomes one of

constrained.roundeven, constrained.lround, llvm.ceil, llvm.floor,

or fptosi, depending on the rounding mode. Analogous measures

are required for fp.to_ubv and fp.roundToIntegral.

4.3 Backend translation

Simple operations, variables, and types. During backend trans-

lation, the straightforward operations listed in Section 4.2 can be

translated just as during frontend translation. Function arguments

of 𝐿′ are converted to variables in 𝐶′ with the same names and

types. LLVM’s optimizer may add or remove intermediate SSA

variables in 𝐿, but only the function arguments are converted to

variables in 𝐶 . The optimizer may render one of the function ar-

guments dead; in this case, it is not translated back into a variable.

Therefore, the set of variables in 𝐶′ is a subset of the variables in
𝐶 . Bitvector and floating-point types are also translated as during

frontend translation. However, LLVM does not distinguish between

booleans and 1-wide bitvectors, while SMT-LIB does. In most cases,

this distinction is immaterial, and we treat i1 as a boolean, but

where the optimizer introduces bitvector operations on an i1 (for

instance, sign extension), we convert the argument to a bitvector,

rather than a boolean.

Undefined behavior. During frontend translation, great caremust

be taken not to introduce undefined behavior into 𝐿. This is be-

cause the SMT versions of operations are more strictly defined than

those in LLVM; in other words, the SMT bitvector division, for in-

stance, matches the outputs of LLVM division on all inputs, but not

the reverse. LLVM optimization does not introduce any undefined

behavior, so, during backend translation, we need not insert any

checks around operations like division and shifting. There is one

LLVM operation that is undefined in SMT-LIB: bitcast conversions

from floating-point values to integers. SLOT handles these conver-

sions by introducing an extra integer variable and constraining the

result of converting it to a floating-point.

Bit operations intrinsics Frontend translation produces only

those intrinsics listed in Section 4.2. However, the optimizer may

introduce other intrinsics which must be handled by backend trans-

lation. The llvm.bswap intrinsic swaps the lowest and highest bytes

of its input, and is translated to a sequence of extract and con-

catenate operations representing these semantics. Similarly, the

llvm.bitreverse intrinsic reverses all of the bits; this is also achieved

by composing extraction and concatenation. Finally, the llvm.ctpop

intrinsic counts how many bits are set (have value 1) in a bitvec-

tor; this is also achieved through several extractions followed by

addition.

Math intrinsics. LLVM includes the intrinsics umin, umax, smin,

and smax to take the signed minimum, unsigned maximum, signed

minimum, and signed maximum, respectively, of two bitvector

arguments. These intrinsics are translated into an SMT-LIB ite

operation with the appropriate comparison. For example, a umin

call on bitvector arguments 𝑎 and 𝑏 is translated to the SMT-LIB

expression (ite (bvult a b) a b).

In addition, LLVM includes “saturated” math operations like

llvm.usub.sat. These instructions prevent over- and underflow by

clamping the return value to 0 if underflow would have occurred.

Like the minimum and maximum operations, these intrinsics are

translated to a ite expression. Rounding mode intrinsics produced

by frontend translation must also be converted back to the corre-

sponding SMT function with the correct rounding mode argument.
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4.4 Preservation of satisfiability

We show that, for bitvector and floating-point constraints, the sat-

isfiability of the original SMT constraint is preserved through fron-

tend translation (Lemma 1), optimization, and backend translation

(Lemma 2).

Property 1 (Optimizer semantics preservation). Given an

input LLVM function𝐿 which does not contain any undefined behavior,

the result of optimizing 𝐿, call it 𝐿′, has the same semantics as 𝐿. That

is, for all inputs 𝑙1, 𝑙2, . . . , 𝑙𝑛 , 𝐿(𝑙1, 𝑙2, . . . , 𝑙𝑛) = 𝐿′ (𝑙1, 𝑙2, . . . , 𝑙𝑛).

This property of the optimizer may not always hold because the

optimizer may contain bugs. But in our work, we take it as ground

truth that the input and output of the optimizer are equivalent.

Because we focus on relatively simple optimizations (e.g., we do

not deal with memory operations), compiler bugs changing our

results are likely to be rare. In our testing of more than 100,000

SMT benchmarks, we have encountered no compiler bugs. We now

prove that SLOT is semantics-preserving.

Lemma 1 (Frontend translation). Let 𝐶 be an SMT constraint

with variables 𝑐1, 𝑐2, . . . , 𝑐𝑛 , and 𝐿 be the function produced by the

frontend translation of 𝐶 . Then 𝐶 is satisfiable if and only if there

exists an input to 𝐿 for which 𝐿 returns true.

Proof. (⇒) Assume 𝐶 is satisfiable. Then there exists an as-

signment of the variables of 𝐶 , 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} for which 𝐶

evaluates to true. Let 𝐿 denote the LLVM function resulting from

frontend translation. From Section 4.2, at each instruction 𝑖 in 𝐿,

the value produced by 𝑖 is the same as the value produced by the

corresponding function application in 𝐶 . In particular, with the

assignment 𝑋 , 𝐶’s outermost function application should produce

true. This means that the last instruction in 𝐿 must return true.

(⇐) Assume that there is an input𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} such that
𝐿(𝑋 ) is true, and consider whether the assignment of the values 𝑋

to the variables of𝐶 satisfies𝐶 . By the translations in Section 4.2, for

each instruction 𝑖 , the equivalent function application in 𝐶 yields

the same value. In particular, we assume that the last instruction in

𝐿 returns true; this corresponds to the final result of evaluating 𝐶 ,

so the assignment 𝑋 must satisfy the constraint 𝐶 . □

Lemma 2 (Backend translation). Let 𝐿 be an LLVM function

over integer (bitvector) types with 𝑛 arguments, and let 𝐶 be the SMT

constraint resulting from performing backend translation on 𝐿. Then,

𝐶 is satisfiable if and only if there exists a set of inputs 𝑙1, 𝑙2, . . . , 𝑙𝑛
such that 𝐿(𝑙1, 𝑙2, . . . , 𝑙𝑛) returns true.

Proof. (⇒) Assume that there exists an input 𝑙1, 𝑙2, . . . , 𝑙𝑛 on

which 𝐿 returns true. Let the set of values of the internal SSA

variables of 𝐿 under the given input be 𝑣1, 𝑣2, . . . , 𝑣𝑙 , and call 𝑌 =

{𝑙1, 𝑙2, . . . , 𝑙𝑛, 𝑣1, 𝑣2, . . . , 𝑣𝑙 } the set of all variables from 𝐿. At each

instruction 𝑖 in 𝐿, the corresponding function application in𝐶 gives

the same value as 𝑖 . In particular, because 𝐿 returns true, the last

instruction, and so the result of evaluating 𝐶 , must be true, which

means that the assignment 𝑌 satisfies the constraint 𝐶 .

(⇐) Assume that 𝐶 is satisfiable. This means that there exists

a set of variables 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑘 } for which 𝐶 produces true.

Now take the subset of 𝑌 , which corresponds to the input variables

of 𝐿. At each instruction in 𝐿, we know the value must be the same

as the corresponding SMT function application. In particular, the

outermost function of 𝐶 corresponds to 𝐿’s return instruction, so

since the assignment 𝑌 caused 𝐶 to evaluate to true, 𝐿 must also

return true. □

Theorem 1 (Preservation of satisfiability). Given an SMT

constraint 𝐶 on floating-points and bitvectors, the new constraint 𝐶′

produced by SLOT is satisfiable if and only if 𝐶 is satisfiable.

Proof. (⇒) Let 𝐿 be the LLVM function produced by frontend

translation of𝐶 , 𝐿′ be the result of optimizing 𝐿, and𝐶′ be the result
of conducting a backend translation of 𝐿′. Assume 𝐶 is satisfiable.

Then by Lemma 1, there exists an input on which 𝐿 returns true.

Moreover, from Section 4.2, we know that 𝐿 contains no undefined

behavior. Therefore, by Property 1, there is an input to 𝐿′ such that

𝐿′ also returns true. But then, by Lemma 2, 𝐶′ is satisfiable.
(⇐) Assume that𝐶′ is satisfiable. Then by Lemma 2, there exists

an input on which 𝐿′ returns true. Again, we know that 𝐿 has no

undefined behavior by the lemmas in Section 4.2, so by Property 1,

there is an input to 𝐿 for which 𝐿 returns true. But then, by Lemma 1,

𝐶 is satisfiable. □

Theorem 1 means that the sequence of translation, optimization,

and translation described in this section produces a new constraint

that has the same satisfiability as the original. Moreover, because

of the construction of the translation, SLOT also preserves models

between 𝐶 and 𝐶′. That is, if 𝐶 is satisfiable, an assignment that

satisfies 𝐶′ directly gives an assignment that satisfies the original

constraint—we just ignore the extra variables introduced by the

translation and optimization process. The theoretical guarantee

of Theorem 1 gives us a practical, solver-agnostic tool for pre-

processing and optimizing SMT constraints.

5 EVALUATION

We evaluate SLOT by applying it to the SMT-LIB benchmark suites

for the subject theories [3]. We highlight our most important results

as follows.

• SLOT increases the number of solvable formulas at speci-

fied timeouts by up to 24% for bitvector-only benchmarks,

14% for floating-point-only benchmarks, and 80% for mixed

benchmarks, allowing the solving of all but one QF_BVFP

benchmark within 600 seconds.

• On average, SLOT slows down the smallest benchmarks but

speeds up the largest benchmarks. Geometric mean speedups

are up to 2.8× for bitvector-only benchmarks and over 3×
for floating-point benchmarks.

• Most of SLOT’s speedup is the result of just a few simple

LLVM optimization passes like instcombine. Our approach

shows which optimizations are “missing” from SMT solvers

and allows the effort involved in developing these passes to

be instantly available in the SMT context.

5.1 Experimental setup

Given a solver, a benchmark, and a timeout 𝑇 ∗, we follow a three-

step process to test the effectiveness of SLOT. First, wemeasure how

long it takes for the solver to conclude either sat or unsat for the

benchmark; call this 𝑇pre . Then, we apply SLOT to the benchmark,
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Table 2: Timeout improvement results produced by SLOT. Each column denotes a different time limit with the total number

of original unknown formulas (“Total”), the number improved (“Imp.”), and the percentage (“%”). The “All” rows denote the

number of formulas for which all solvers timed out, but at least one of the solvers produced a solution after SLOT was applied.

600 300 120 60 30

Benchmark Solver Total Imp. % Total Imp. % Total Imp. % Total Imp. % Total Imp. %

QF_FP

Z3 129 11 8.5 146 12 8.2 161 10 6.2 189 10 5.3 199 6 3.0

CVC5 58 8 13.8 74 7 9.5 90 7 7.8 110 8 7.3 124 6 4.8

All 55 5 9.1 74 7 9.5 90 7 7.8 109 7 6.4 123 5 4.1

QF_BVFP

Z3 19 6 31.6 28 11 39.3 39 7 18.0 58 7 12.1 95 20 21.0

CVC5 6 4 66.7 6 4 66.7 8 3 37.5 14 3 21.4 35 13 37.1

All 5 4 80.0 5 3 60.0 7 2 28.6 13 2 15.4 28 9 32.1

QF_BV

Z3 2771 503 18.2 3247 485 14.9 3992 675 16.9 4545 706 15.5 5297 639 12.1

CVC5 2149 283 13.2 2397 348 14.5 2922 441 15.1 3950 808 20.4 4721 898 19.0

Boolector 1723 264 15.3 2057 335 16.3 2580 358 13.9 3150 513 16.3 38952 550 13.9

All 776 117 15.1 908 128 14.1 1141 137 12.1 1509 253 16.8 2177 525 24.1

producing a new SMT constraint; we call the time it takes to do

this 𝑇SLOT. Finally, we measure how long the solver takes to solve

the optimized benchmark, 𝑇post . For a fair comparison, we must

offset the overhead of running SLOT against the speedup achieved.

Thus, a formula has been improved if 𝑇SLOT +𝑇post < 𝑇pre . This is

the SLOT-only result. In addition, we adopt the portfolio methodol-

ogy [44]; by running SLOT optimization in parallel with a solver,

a user can simply take whichever result is produced first. When

discussing speedups, we report this (i.e., min{𝑇pre,𝑇SLOT +𝑇post })
as the portfolio result. We report all proportional speedups as geo-

metric means, reducing the impact of large outliers. We answer the

following research questions:

• RQ1: How many more formulas can be solved? Given

a time limit, how many formulas from benchmark sets can

SLOT convert from unknown to either sat or unsat?

• RQ2: Howmuch faster can formulas be solved?What is

the proportional speedup produced by SLOT for constraints

with low and high original solving times?

• RQ3: Which LLVM optimization passes contribute?

Which optimization strategies in LLVM are most effective at

simplifying SMT formulas beyond the capabilities of existing

solvers?

Implementation. We have implemented SLOT in about 2,500

lines of C++ and made it publicly available on Github.
2
We use Z3’s

built-in parser for the SMT-LIB language and the standard LLVM

C++ API, but provide input and output in the standard SMT-LIB

format for use with solvers other than Z3. Frontend and backend

translation is carried out as described in Section 4. SLOT has been

tested with LLVM version 16.0.0.

Benchmarks. We use as test cases the standard solver benchmarks

provided by the SMT-LIB developers for floating-point numbers

(QF_FP, 𝑛 = 40, 407), bitvectors (QF_BV, 𝑛 = 46, 191), and mixed

floating-point and bitvector constraints (QF_BVFP, 𝑛 = 17, 249) [3].

As discussed in Section 4, we restrict floating-point variables to

the standard 16-, 32-, 64-, and 128-bit widths and exclude any con-

straints which contain variable rounding modes. These limits are

2
https://github.com/mikekben/SLOT.

minimal: only 26 benchmarks from QF_FP (all for variable rounding

mode), and 128 QF_BVFP benchmarks (89 for unsupported widths

and 39 for variable rounding modes) are excluded, amounting to

just 0.2% of all mixed and floating-point benchmarks.

Solvers. We test with the state-of-the-art general SMT solvers Z3

and CVC5 used in prior literature [43, 46]. For the bitvector-only

benchmarks, we also test with Boolector [36], a solver specifically

optimized for bitvectors [45]. SLOT has been tested with Z3 version

4.12.1, CVC5 version 1.0.5, and Boolector version 3.2.2.

Testing environment. All experiments are performed on a server

with two AMD EPYC 7402 CPUs and 512GB RAM, running Ubuntu

20.04. We test with timeouts between 30 and 600 seconds, in line

with those used in applications for translation validation [26] (zero

to five minutes) and symbolic execution (between five and 129

solver calls within one hour) [12]. Finally, whenmeasuring speedups,

we count solver and SLOT timeouts as 600-second contributions.

5.2 RQ1: How many more formulas can be

solved?

Table 2 shows the number of constraints that are changed from

unknown to solved by SLOT for each of the three benchmark sets.

The total column denotes the number of unknown benchmarks at

each timeout, and the improved column (“Imp.”) gives the number of

constraints, from those, which can be solved after SLOT is applied.

The results include SLOT’s running time, i.e.,we report a benchmark

as improved only if 𝑇post +𝑇SLOT < 𝑇 ∗. Since solvers are typically
run with a fixed timeout, e.g., during symbolic execution [12], the

proportion of constraints that move from timeout to solved at fixed

values of 𝑇 ∗ represents an improvement for users.

SLOT is most effective at speeding up constraints with a mix of

floating-point and bitvector variables. It allows all but one mixed

benchmark to be solved within 600 seconds and reduces the number

of unsolvable constraints by about one-third at all time limits. SLOT

renders solvable roughly 10% of timeout floating-point constraints,

and 15%-20% of bitvector benchmarks. The results are comparable

for each of the tested solvers, showing that SLOT’s speedup is not

solver-specific.

https://github.com/mikekben/SLOT
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Most importantly, SLOT not only improves each solver’s per-

formance but also does better than all solvers combined. The “All”

rows in Table 2 show the number of benchmarks for which all of the

solvers timed out and the number which became possible to solve

with at least one of the solvers. The improvements in these rows

show that SLOT outperforms even a portfolio of existing solvers,

decreasing the number of unknown constraints by as much as 24%

for small bitvector benchmarks.

5.3 RQ2: How much faster can formulas be

solved?

Figure 8 shows the mean speedups observed for each benchmark set.

Values below one indicate a slowdown. For the smallest benchmarks,

SLOT slows down solving, often substantially. However, while the

proportional slowdown is large, the absolute slowdown is typically

small, and occurs because the overhead of translating outweighs the

cost of simply solving the benchmark (i.e.,𝑇SLOT > 𝐶pre). For exam-

ple, one benchmark
3
with Z3 is sped up from 0.06 seconds to 0.02

seconds (a 3× speedup), but SLOT takes 0.24 seconds to translate

and optimize it, creating an overall proportional slowdown.

The effect reverses for more complex constraints: for constraints

that take longer than 300 seconds, we improve mean solving time

by more than 1.25× for floating-point, about 1.6× for mixed, and be-

tween 1.6× and 2× for bitvector benchmarks. The portfolio method-

ology yields even greater running time improvements, in the range

of 3× for QF_BVFP and 2× for QF_BV. Even small constraints below

60 seconds of initial running time see appreciable speedups un-

der all solvers with the portfolio method. The difference between

the SLOT-only and portfolio results exists because the dramatic

speedup of some constraints is offset by a slowing down of others.

5.4 RQ3: Which LLVM optimization passes

contribute?

To understand why SLOT produces performance improvements,

we investigate which LLVM passes contribute most to the under-

lying results. The structure of SMT constraints means that most

LLVM optimization passes are irrelevant to SLOT. Translated SMT

constraints differ from most programs in that:

• They perform no memory operations–SMT variables are

directly translated into LLVM function arguments.

• They have only one function; this maintains the equivalence

definitions described in Section 4.

• The single function has only one basic block (i.e., there is

no branching). This is a consequence of the nature of SMT

constraints; the only branch–like operation is ite, which is

translated to an LLVM select instruction.

The majority of LLVM’s 58 optimization passes affect only memory

operations (7), are interprocedural (10), or optimize branching (17).

An additional 16 passes do not apply to translated SMT constraints

for a variety of other reasons (they are architecture-specific, they

optimize debug information, etc.). We also exclude bb-vectorize

because vectorization introduces substantial translation overhead

while providing no benefit in the SMT context. This leaves eight

3
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Figure 8: Geometric mean speedup from original constraint

to optimized constraint produced by SLOT for each bench-

mark set under Z3, CVC5, and Boolector (for QF_BV). Con-

straints are grouped into ranges of original solving time

along the x-axis. All measurements include 𝑇SLOT.
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Table 3: Percentage of benchmarks affected by each optimiza-

tion pass.

Pass QF_FP QF_BVFP QF_BV

instcombine 99% 100% 78%

reassociate 78% 57% 26%

gvn <1% <1% 43%

sccp 0% <1% 17%

dce 0% <1% 17%

instsimplify 0% <1% 16%

aggressive-instcombine 0% 0% <1%

adce 0% 0% 0%

passes that are relevant to SLOT: instcombine (regular and aggres-

sive), instsimplify, dead code elimination (regular and aggressive),

global value numbering, reassociate, and sparse conditional con-

stant propagation (SCCP). SLOT runs these passes in the same order

in which they are performed during LLVM O3 optimization.

Table 3 shows how many benchmarks each optimization pass

affects; a benchmark is counted for a pass if the pass applica-

tion caused any change to the LLVM IR function. Agressive dead

code elimination did not change any constraints, and aggressive

instcombine only changed a few; this may be because, for the SMT

context, their features are usually handled by the non-aggressive

versions. The most effective passes are instcombine, which changes

almost every constraint, reassociate, and global value numbering

(for QF_BV). Notably, many more passes change bitvector bench-

marks than floating-point; this is a combined result of lower struc-

tural complexity in the QF_FP and QF_BVFP benchmark sets and

greater difficulty in optimizing floating-point operations.

Table 4 shows the mean speedup observed for benchmarks which

were and were not affected by each optimization pass for QF_BVwith

initial timeouts above 30 seconds; the results for floating-point and

mixed benchmarks are comparable, but have small sample size.

Even passes with negative spread, like dce, are beneficial under

portfolio methodology. The results confirm that reassociate and

instcombine speed up benchmarks the most, followed by global

value numbering and instsimplify.

The instcombine pass consists mostly of simple peephole opti-

mizations, which shows that solver performance could benefit from

simple theory-specific reasoning, which is already implemented

in compilers. Global value numbering and reassociation also con-

tribute substantially; while some solver heuristics already eliminate

common subexpressions, more advanced implementations of these

algorithms in LLVM provide further benefits. Our results show

that the extensive effort expended to perfect compiler optimiza-

tions indeed provides benefits beyond those available in existing

SMT solvers. Using SLOT, solver users can benefit from that effort

without deep knowledge of solver implementation.

6 DISCUSSION

Compiler optimization vs. SMT simplification. Because the

purpose of compiler optimizations is to reduce the number of pro-

cessor instructions, some operations which are “simpler” in LLVM

may not provide any advantage in SMT. For example, bitvector

multiplication by 2
𝑛
is equivalent to shifting left by 𝑛; however,

Table 4: Mean speedups for benchmarks which are and are

not affected by each pass from the QF_BV benchmark set with

initial solving time above 30 seconds under Z3. The spread is

the difference in mean speedup between benchmarks which

are affected by the pass and those which are not.

Pass Count

Speedup

without

Speedup

with

Spread

reassociate 2, 168 1.58× 2.02× 0.44

instcombine 4, 031 1.49× 1.83× 0.34

gvn 3, 816 1.51× 1.85× 0.34

instsimplify 1, 562 1.74× 1.75× 0.22

sccp 1, 360 1.71× 1.86× 0.15

dce 1, 705 1.78× 1.68× −0.10
agg-instcombine 8 1.75× 1.22× −0.53

Z3 takes much longer to solve constraints involving shifts. On one

benchmark
4
for example, Z3 takes less than a second if doubling is

expressed as 𝑎 + 𝑎 or 2 × 𝑎, but does not finish within 24 hours if it

is expressed as shift left by one.

In our implementation of SLOT, we provide a flag to force back-

end translation to generate multiplication, rather than shift, where

possible. However, there may be more complex analogous exam-

ples arising from the fundamentally different purpose of LLVM. So

while compiler optimization unlocks logic not present in existing

SMT solvers, it acts more as a sieve than as a magic bullet. Running

SLOT and a solver as a portfolio allows solver heuristics and SLOT

each to shine where they perform best, each doing well on some

benchmarks but slowing down on others. Only those benchmarks

that neither can handle slip through the sieve.

SLOT overhead. The main driver of the proportional slowdown

for small constraints is the cost of running SLOT. In contrast to a

solver, which just needs to parse the constraint, SLOT must parse,

translate, optimize, translate again, and then write. SLOT’s runtime

is roughly linear in the size of the AST of the original constraint,

while SMT solving has unpredictable, possibly exponential perfor-

mance. This means that the proportion of𝑇SLOT +𝑇post contributed
by SLOT generally decreases as 𝑇pre increases, as shown in Table 5.

The moderate increase for QF_BV benchmarks above 300 seconds

is a result of SLOT timeouts; these are counted as 100% contribution

in Table 5. Frontend translation makes up about 60% of the running

time of SLOT for bitvectors, and about one-third for mixed and

floating-point constraints while optimization contributes between

7% and 10%. Backend translation takes longer for constraints in-

cluding floating-point numbers (about 60%) because floating-point

intrinsics require additional steps to be translated back to SMT-LIB.

Other SMT Theories. Program analysis tools make use of just

a few SMT theories: bitvectors [26], floating-point [25], and more

recently, strings [6]. SLOT improves the performance of solvers on

the theories relevant to these applications, and we leave to future

work the extension of SLOT’s general method to other theories like

real numbers of use outside software engineering [22]. While the

optimization process used in SLOT may provide benefits outside

bitvectors and floating-point numbers, applying translation and

4
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Table 5:
𝑇SLOT/(𝑇SLOT +𝑇post

)
(as a percentage) for bitvector and

floating-point benchmarks.

Time interval (𝑇pre using Z3) QF_FP QF_BV QF_BV

0-30 32.21% 22.17% 48.24%

30-60 0.02% 0.16% 3.96%

60-120 0.01% 0.20% 1.67%

120-300 0.01% 0.09% 2.01%

300-600 0.02% 0.01% 2.84%

optimization to other theories would require either a new concep-

tion of semantics preservation or substantial under-approximation,

since compiler IRs are not expressive enough to model unbounded

computation. The limitations imposed by under-approximating

may also negate any benefit provided by compiler optimizations.

7 RELATEDWORK

SMT constraint transformation. Existing work presents a num-

ber of strategies for simplifying SMT constraints. Dillig et al. [17]

introduce a solver-internal constraint simplification algorithm that

preserves satisfiability. Reynolds et al. [38, 39] introduce simplifying

transformations for unbounded string constraints. Transformations

of SMT formulas are also employed to test solvers. StringFuzz [9]

focuses on generating well-formed formulas, but also provides

some transformations on string constraints. STORM [28] trans-

forms boolean formulas to perform black-box testing. Bugariu et

al. [11] introduce constant assignment and term synthesis as trans-

formations for string constraints. Sparrow [46] and YinYang [43]

expand transformations to real numbers and integers. The trans-

formations performed by these tools are designed to test solvers;

our approach uses a related method to speed up solving instead.

Speeding up SMT solving. Most work on improving SMT solver

performance focuses on algorithms to be implemented within a

solver. In addition to Z3, CVC5, and Boolector, such work has taken

the form of new solvers like MathSAT [14], Bitwuzla [32], and

Yices [19]. Early work on improving solver performance used sym-

metry to reduce the constraint-solving search space [16]. More

recently, Niemetz et al. introduced syntax-guided quantifier instan-

tiation to speed up solving for quantified constraints [33]. For par-

ticular theories, Z3str3 speeds up solving of string constraints [5],

and Berzish et al. introduce new methods for solving constraints

involving regular expressions [6]. Sadhak [30] combines CVC4 with

fuzzing techniques for uninterpreted functions to improve perfor-

mance. FastSMT [1] uses a neural network to find better ways to

combine existing solver heuristics, thereby speeding up solving.

MBA-Solver [45] departs from solver-specific approaches by pre-

processing bitvector constraints involving alternating bitwise and

arithmetic operations. Our approach is most similar to MBA-Solver,

as SLOT uses pre-processing rather than solver-internal improve-

ments. However, it differs in that we apply the broad range of

optimizations performed by LLVM, including floating-point trans-

formations. We harness an existing source of optimizations as a

black box rather than hand-crafting one for the SMT problem.

The constraint–code nexus. Work on symbolic execution and

translation validation has used SMT constraints to represent the se-

mantics of LLVM programs. KLEE [12] converts LLVM IR programs

into SMT formulas that encode symbolic execution constraints;

many symbolic execution tools are built on the LLVM-SMT core

provided by KLEE [37]. Alive and its progeny [26, 27] generate SMT

constraints from LLVM instructions to verify the optimizations per-

formed by the LLVM optimizer, which Lee et al. [23] expands to

LLVM’s memory model. LifeJacket [34] and Alive-FP [29] use SMT

formulas to verify floating-point computation. VeRA [10] also trans-

lates C++ code to SMT constraints for program verification, and

faces some engineering challenges analogous to SLOT. Constraints

in the formal refinement-based B-method have also been translated

to SMT-LIB [20, 40]. These approaches use SMT solvers to reason

about programs and compilers. SLOT does the opposite, using a

compiler for reasoning about SMT problems and exactly preserving

constraint semantics instead of solving analysis constraints.

Optimizations outside compilers. Dong et al. [18] apply com-

piler optimizations directly to programs which serve as inputs for

KLEE. They find that those optimizations can slow down symbolic

execution because the optimizer complicates branching structure.

LEO [13] attempts to remedy this limitation by using machine learn-

ing to choose which optimization passes to apply. SLOT’s results

differ because it operates at the level of constraints, not programs.

This allows SLOT to work in contexts outside symbolic execution,

and also to avoid analysis-frustrating branching optimizations.

Declarative and imperative code. Existing work has explored

conversion from declarative to imperative languages to allow plat-

form flexibility [41] or give access to greater optimization oppor-

tunities [42]. More recently, Li and Slind [24] convert functions

in higher-order logic to a simplified intermediate representation.

Steno [31] translates declarative queries into imperative code to

speed up operations over collections. SLOT, on the other hand,

goes beyond translation to an imperative language by adding back-

end translation and achieves a simplification of the declarative

constraints, rather than transforming them into executable code.

8 CONCLUSION

This paper has presented a general pre-processing tool, SLOT,

which allows solver users to apply compiler optimizations to SMT

constraints as a black box. SLOT practically improves solvers’ per-

formance on standard benchmarks and increases the number of

solvable constraints at fixed time limits. Furthermore, the speedup

is achieved using only the simplest compiler optimization passes,

giving solver developers insight into possible improvements to

solver tactics.
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