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Many program-analysis problems can be formulated as graph-reachability problems. Interleaved Dyck lan-

guage reachability (InterDyck-reachability) is a fundamental framework to express a wide variety of

program-analysis problems over edge-labeled graphs. The InterDyck language represents an intersection of

multiple matched-parenthesis languages (i.e., Dyck languages). In practice, program analyses typically lever-

age one Dyck language to achieve context-sensitivity, and other Dyck languages to model data dependencies,

such as field-sensitivity and pointer references/dereferences. In the ideal case, an InterDyck-reachability

framework should model multiple Dyck languages simultaneously.

Unfortunately, precise InterDyck-reachability is undecidable. Any practical solution must over-

approximate the exact answer. In the literature, a lot of work has been proposed to over-approximate the

InterDyck-reachability formulation. This article offers a new perspective on improving both the precision

and the scalability of InterDyck-reachability: we aim at simplifying the underlying input graph G. Our key

insight is based on the observation that if an edge is not contributing to any InterDyck-paths, we can safely

eliminate it fromG. Our technique is orthogonal to the InterDyck-reachability formulation and can serve as

a pre-processing step with any over-approximating approach for InterDyck-reachability. We have applied

our graph simplification algorithm to pre-processing the graphs from a recent InterDyck-reachability-based

taint analysis for Android. Our evaluation of three popular InterDyck-reachability algorithms yields promis-

ing results. In particular, our graph-simplification method improves both the scalability and precision of all

three InterDyck-reachability algorithms, sometimes dramatically.
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1 INTRODUCTION

The L language-reachability (L-reachability) framework is a popular model to formulate many
program-analysis problems [16]. An L-reachability instance Reach〈L,G〉 contains (1) a formal lan-
guage L that formalizes the analysis problem, and (2) an edge-labeled graph G that represents the
program under analysis. Two nodes are L-reachable in G iff there exists a path joining them, and
the path string belongs to L. In the literature, the most popular L-reachability formulation is Dyck-
reachability [11, 27]. A Dyck language essentially generates well-balanced parentheses, which
can be used to capture well-paired program properties, such as function calls/returns [17, 18, 24],
pointer references/dereferences [29, 30], locks/unlocks [10, 15], and field reads/writes [9, 26, 27].

A natural generalization of Dyck-reachability is Interleaved Dyck-reachability

(InterDyck-reachability) [9, 14, 17, 28]. The Interleaved Dyck language denotes the in-
tersection of multiple Dyck languages based on an interleaving operator �. For instance, let
L1 and L2 be two Dyck languages that generate matched parentheses and matched brackets,
respectively. The string “� � � � � �” belongs to the language InterDyck = L1 � L2, because
both parentheses and brackets are properly matched. InterDyck-reachability is much more
expressive than Dyck-reachability, and in practice, brings tremendous precision improvements
in client analyses. In particular, almost all recent work on context-sensitive, field-sensitive
analysis has adopted the InterDyck-reachability formulation to achieve both the context- and
field-sensitivities simultaneously [9, 21, 28].

Unfortunately, solving InterDyck-reachability is computationally hard because the InterDyck-
reachability problem is, in general, undecidable [17]. Therefore, any practical analysis must approx-
imate the exact answer. In practice, it is quite challenging to develop a suitable over-approximative
InterDyck-reachability framework that offers a sweet spot in the trade-off between precision and
scalability. InterDyck is a prototypical example of a non-context-free language [8]. Traditional
approaches employ less expressive but polynomial-time decidable language-reachability frame-
works, such as context-free-language reachability (CFL-reachability) to over-approximate
InterDyck-reachability [9, 23, 26]. For example, the recent work by Späth et al. proposed synchro-
nized pushdown systems to compute a sound solution for InterDyck-reachability [21]. The work
by Zhang and Su proposed linear-conjunctive-language reachability (LCL-reachability) to
precisely describe the InterDyck-reachability formulation [28]. However, the LCL-reachability al-
gorithm is inherently an over-approximation. To the best of our knowledge, all previous efforts on
the InterDyck-reachability problem attempt to improve either on the L-reachability formulation
or the L-reachability algorithm.

In this article, we attack the InterDyck-reachability problem from a new angle. Consider an
InterDyck-reachability instance Reach〈L,G〉. Unlike existing approaches that improve either the
L-reachability formulation or the algorithm, our approach focuses on simplifying the input graph
G in Reach〈L,G〉. Specifically, we give an efficient algorithm to simplify the input graphs by elim-
inating “useless” graph edges. The benefits of graph simplification are two-fold. First, working
with smaller graphs improves the scalability of all existing approaches for InterDyck-reachability.
Second, because all InterDyck-reachability algorithms are inherently over-approximative, they
could achieve better precision by working with graphs that contain fewer edges. The technical chal-
lenge, however, is to design a graph-simplification algorithm that is both effective (i.e., it should
remove as many “useless” edges as possible) and efficient (i.e., as a pre-processing step, it should
run much faster than the InterDyck-reachability algorithm itself).

Consider an InterDyck language L1 � L2 . . . � LN , where for each i ∈ [1,N ], Li is a Dyck
language. Our enabling insight is to decompose the undecidable InterDyck-reachability prob-
lem in the input graph G into N subcubic-time Dyck-reachability problems in a new graph G ′.
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The new graph G ′ is a relaxation of the original graph G that is bidirected, i.e., for each edge

u
�i−→ v labeled by an open-parenthesis �i , there exists its corresponding close-parenthesis edge

v
�i−→ u, and vice versa. The decomposition of the InterDyck-reachability problem into N Dyck-

reachability problems transforms the undecidable problem into N subcubic-time problems [2]. The
relaxation of graph G transforms each subcubic-time Dyck-reachability problem into a bidirected
Dyck-reachability problem, which can be solved in almost linear time [1]. After the relaxation,
if an edge contributes to an InterDyck-path in G, the corresponding edge must contribute to a
Dyck-path inG ′.G ′ contains more edges thanG, and hence more paths thanG. Therefore, we can
safely delete all non-contributing edges that are not involved in any InterDyck-paths inG ′, as well
as in G. The problem then becomes one of identifying non-contributing edges in G ′.

The bidirected-graph relaxation from G to G ′ plays a significant role for graph simplification.
Dyck-reachability in the bidirected graph G ′ has special properties that allow us to identify non-
contributing edges much faster than if it were attempted in G. In particular, given an input graph
G with n nodes andm edges, we give an efficient algorithm that simplifiesG inO (m+n ·α (n)) time,
whereα denotes the inverse Ackermann function. This graph-simplification algorithm is asymptot-
ically faster than the fastest O (mn)-time InterDyck-reachability algorithm [28]. We also propose
a specialized graph-simplification algorithm—which has the same complexity—for when the input
graph G is already bidirected. The techniques are general and can be used as a preprocessing step
for any existing InterDyck-reachability algorithms.

We have implemented the graph-simplification algorithm, and evaluated it on a recent Inter-
Dyck-reachability-based taint analysis for Android [9]. In particular, we tested graph simplification
with three popular InterDyck-reachability algorithms, based on CFL-reachability [16], synchro-

nized pushdown system reachability (SPDS) [21], and LCL-reachability [28]. Our experimental
results are encouraging: the graph simplification technique significantly improves both the perfor-
mance and the precision of the client analyses.

— We found that, on average, it is 2.63× faster to (i) run the simplification algorithm on digraph
G—thereby creating simplified digraph Gf —and then (ii) run an InterDyck-reachability al-
gorithm A on Gf , compared to running A directly on the original graph G.

— In the experiments with LCL-reachability, we found that the cost of running the simplifica-
tion algorithm is recouped for all examples that require more than seven seconds to run in
the original graphs.

— The number of reachable pairs returned by the analysis based on the simplified graph Gf is
reduced to 64.92% compared to the number obtained by running the analysis onG. Moreover,
the analysis run on Gf uses 57.37% memory for the analysis running on G.

Our work makes the following contributions:

— We propose a novel graph-simplification framework for InterDyck-reachability. Our tech-
nique reduces input-graph size, and is compatible with all existing sound InterDyck-
reachability algorithms.

— Given a graph with n nodes and m edges, we give a fast simplification algorithm that runs
in O (m + n · α (n)) time. In practice, our algorithm scales linearly with the graph size.

— We evaluate our technique based on a variety of InterDyck-reachability algorithms for
taint analysis. Our empirical results show that graph simplification is beneficial: running an
analysis on a simplified graph (plus graph simplification) is faster than running the analysis
on the original graph. With simplified graphs, all evaluated algorithms yield more precise
results and use less memory as well.
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Fig. 1. Motivating taint-analysis example.

This work focuses on graph simplification for the InterDyck-reachability problem. However,
our graph simplification algorithm can also be applied to Dyck-reachability problems because our
proposed O (m + n · α (n)) graph simplification algorithm is significantly faster than the subcubic
Dyck-reachability algorithms.

The remainder of the article is organized as follows: Section 2 motivates graph simplification.
Section 3 gives definitions and the problem formulation. Section 4 presents the idea of eliminat-
ing non-contributing edges. Section 5 gives the simplification algorithm. Section 6 describes our
evaluation. Section 7 discusses related work. Section 8 concludes.

2 MOTIVATING EXAMPLE

We motivate our graph-simplification method using a formulation of taint analysis as an Inter-
Dyck-reachability problem [9]. Consider the simple Java-like program in Figure 1. For every pair
of variables, the taint analysis checks whether a tainted value can potentially flow between them.

InterDyck-reachability for taint analysis. Figure 1(b) gives the graph G that encodes the taint-
analysis problem for the program in Figure 1(a) as an InterDyck-reachability problem. In partic-
ular, nodes in G represent the variables in the program, and edges represent the assignments and
calls/returns. Each edge is labeled with either a bracket or a parenthesis. Specifically, the brackets
(i.e., � and �) represent field reads/writes, and parentheses (i.e., �, �) represent calls and returns. For
a path in G to represent the flow of a tainted value, both brackets and parentheses must be prop-
erly matched. Let Lb and Lp be Dyck languages of brackets and parentheses respectively. Due to
the work of Huang et al. [9], the taint analysis can be formulated as an InterDyck-reachability
problem over G, where InterDyck = Lb � Lp .

InterDyck-reachability algorithms. The problem of InterDyck-reachability is undecidable [17].
We briefly describe three popular over-approximation algorithms for the InterDyck-reachability.

— CFL-reachability algorithm [16]. The intersection of a regular language and a context-free
language is still context-free. Therefore, we can over-approximate one Dyck language in
InterDyck using a regular language. For instance, let Rb be the regular language that over-
approximates Lb . The reachability problem could be solved by a CFL-reachability algorithm
based on the CFL = Rb ∩ Lp .

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 11. Publication date: May 2022.
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Fig. 2. Overview of the graph-simplification procedure on the taint-analysis example.

— SPDS-reachability algorithm [21]. The SPDS also over-approximates the InterDyck-
reachability. SPDS encodes calls/returns and field reads/writes as separate CFL-reachability
problems, and intersects the results.

— LCL-reachability algorithm [28]. The InterDyck languages belong to the class of LCLs.
Therefore, an LCL-reachability formulation can precisely encode an InterDyck-reachability
problem. Zhang and Su [28] give the LCL rules based on trellis automata, which is an alter-
native form of the LCL grammar for the InterDyck language, and propose a worklist-based
algorithm that computes an over-approximating solution for LCL-reachability.

Graph simplification. Recall that our key idea for graph simplification is to eliminate graph edges
that are not contributing to any InterDyck-paths. Our simplification algorithm is iterative. Intu-
itively, the eliminated edges identified by a previous iteration can be used to identify additional
non-contributing edges in later iterations. Figure 2 provides an overview of the results for the taint-
analysis example after selected iterations of the edge-elimination algorithm. Figure 2(a) shows the
simplification result after the first iteration. The simplification algorithm identifies that the edges

vx

�д

−−→ va , vc

�h−−→ vz , and vy

�11−−→ vs cannot be involved in any InterDyck-paths, so the algorithm

removes these edges. Their removal now allowsvx

�д

−−→ vy andvs

�д

−−→ ret2 to be identified as edges
not contributing for InterDyck-reachability, and the second iteration removes them. Figure 2(b)
gives the simplification result after the second iteration, and Figure 2(c) shows the final result after
no additional removal steps are possible.

Benefits of graph simplification. The graph simplification is iterative. Figures 2(a) and (b) give two
intermediate steps based on the first and second applications, respectively, of our graph simplifica-
tion algorithm (Algorithm 2 in Section 5.2). Figure 2(c) shows the final graph Gf . Compared with
the original graph in Figure 1(b), the number of edges inGf has been reduced from 11 to 4, and the
number of nodes has been reduced from 11 to 5. It is immediate that any InterDyck-reachability
algorithm runs faster on Gf because Gf is only half the size of the original graph G. Table 1 gives
the InterDyck-reachable node pairs and demonstrates another benefit of graph simplification—
namely, when various (over-approximative) InterDyck-reachability algorithms run on the simpli-
fied graph, a more precise answer might be obtained. For the graph in Figure 1(b), as demonstrated
in Table 1, both the CFL-reachability algorithm and SPDS-reachability algorithm benefit in terms
of precision by running on the simplified graph. LCL-reachability algorithm does not obtain a more
precise solution on this specific example; however, our experimental results in Section 6 show that
the LCL-reachability algorithm can also benefit from graph simplification in terms of precision.
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Table 1. Precision Improvement by Graph Simplification

Graph InterDyck-Reachable Node Pairs

CFL LCL SPDS

Original

{
(vx , vz ),
(va, vc )

}
{(va, vc ) }

{
(vx , vz ),
(va, vc )

}

Simplified {(va, vc ) } {(va, vc ) } {(va, vc ) }

We discuss the impact of graph simplification on different InterDyck-reachability algorithms.

— CFL-reachability algorithm. The CFL-reachability algorithm in Figure 1(b) computes a false-

positive reachable pair (vx ,vz ). This pair is introduced by the path p1 = vx

�д

−−→ va

�f

−−→ vb

�8−→

vt

�f

−−→ ret1

�8−→ vc

�h−−→ vz . In the simplified graph Gf (Figure 2(c)), the CFL-reachability
algorithm gives an exact solution.

— SPDS-reachability algorithm. In Figure 1(b), the SPDS-reachability algorithm computes a non-
InterDyck-reachable pair (vx ,vz ). In particular, the field-insensitive pushdown system ac-

cepts the pathp1 = vx

�д

−−→ va

�f

−−→ vb

�8−→ vt

�f

−−→ ret1

�8−→ vc

�h−−→ vz and the context-insensitive

pushdown system accepts the pathp2 = vx

�д

−−→ vy

�11−−→ vs

�д

−−→ ret2

�12−−→ vz . After synchroniza-
tion, the SPDS system concludes thatvz is InterDyck-reachable fromvx . InGf (Figure 2(c)),
neither path exists, and consequently, the SPDS-reachability algorithm produces a precise
solution.

— LCL-reachability algorithm. The LCL-reachability algorithm computes the exact solution in
this example because the graph is acyclic. In practice, graph simplification allows the LCL-
reachability algorithm to run faster and consume less memory. It also eliminates some cycles
in the graph, and improves the precision of LCL-reachability. Moreover, the cost is not pro-
hibitive: in the experiments with LCL-reachability, the cost of running the simplification
algorithm is recouped—often dramatically—for all examples that require more than seven
seconds to run in the original graphs.

3 PRELIMINARIES

This section introduces definitions used in the article. Section 3.1 reviews Dyck languages and the
graph-reachability framework. Section 3.2 describes InterDyck-reachability. Section 3.3 defines
the graph-simplification problem.

3.1 Dyck Language and L-Reachability

A Dyck language is a context-free language that describes the set of well-balancedparenthesis
strings. Let CFG = (Σ,N , P , S ) be a context-free grammar for the Dyck language with k kinds
of parentheses. The CFG has the alphabet Σ = {�i , �i | i ∈ [1..k]}, the nonterminal symbol set
N = {Dk }, the start symbol set S = {Dk }, and the following productions P :

Dk → Dk Dk | �1 Dk �1 | . . . | �k Dk �k | ε . (1)

Given a formal language L and a directed graphG = (V ,E) with each edgeu
t−→ v in E labeled by

a terminal t ∈ Σ, we say that a path p = v0
t0−→ v1

t1−→ v2
t2−→ ...

tm−1−−−−→ vm in G realizes a string R (p)
over the alphabet Σ by concatenating the edge labels in the path in order, i.e., R (p) = t0t1t2 . . . tm−1.
A path p in G is an L-path if the realized string R (p) is a word in the formal language L. Node v

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 11. Publication date: May 2022.
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is L-reachable from node u iff there exists an L-path from u to v in G. The L-reachability problem
Reach〈L,G〉 is to compute all L-reachable node pairs in graph G.

3.2 InterDyck-Reachability

This article focuses on the reachability problem related to the InterDyck language. The Inter-
Dyck language is a prototypical example of a non-context-free language. Informally, the Inter-
Dyck language describes the intersection of multiple Dyck languages, where the parentheses
in each Dyck language can be arbitrarily interleaved. For example, consider two Dyck strings
“� �” ∈ Lb and “� �” ∈ Lp . All of “� � � �”, “� � � �”, and “� � � �” belong to the InterDyck language
based on Lb and Lp . We formally define the class of InterDyck languages based on an interleaving
operation �. Formally, � : Σ∗ ×Σ∗ → P (Σ∗) is a binary operator that takes two strings and returns
a set of strings, where P (·) denotes the power-set operator. The operator � is inductively defined
as follows: for every u ∈ Σ∗, we have u � ϵ = ϵ � u = {u}. Moreover, for every α1,α2,u1,u2 ∈ Σ∗,
α1u1 � α2u2 = {α1w | w ∈ (u1 � α2u2)} ∪ {α2w | w ∈ (α1u1 �u2)}. The interleaving operator can be
extended to languages with

L1 � L2 =
⋃

u1∈L1,u2∈L2

u1 � u2.

Note that � is associative—i.e., (L1 � L2) � L3 = L1 � (L2 � L3)—and hence can be extended to
k Dyck languages with disjoint alphabets. If L1,L2, . . . ,LN are N Dyck languages with disjoint
alphabets, we define InterDyck := L1 � L2 � . . . � LN . The InterDyck-reachability problem is an
L-reachability problem by restricting L to an InterDyck language. In particular,

Definition 3.1 (InterDyck-Reachability). Given an edge-labeled digraph G = (V ,E) and an In-
terDyck language, compute all InterDyck-reachable node pairs in G.

3.3 Problem Formulation

Our technique eliminates graph edges to improve solving InterDyck-reachability. To determine
the set of edges to eliminate, we formally define the “usefulness” of each edge.

Definition 3.2 (L-Contributing Edges). Given an instance Reach〈L,G〉 of L-reachability, an edge
u → v ∈ G is contributing to L-reachability iff it is in an L-path in G, i.e., there exists a path
“p = . . . → u → v → . . .” in G and R (p) ∈ L.

Example 3.3. In the motivating example from Section 2 (Figure 1(b)), the contributing edges

are va

�f

−−→ vb , vb

�8−→ vt , vt

�f

−−→ ret1, and ret1

�8−→ vc that appear in the simplified graph Gf in
Figure 2(c).

In this article, we consider the following graph-simplification problem for InterDyck-
reachability:

Given an InterDyck-reachability problem instance Reach〈InterDyck,G〉, simplify graph G
by eliminating non-InterDyck-contributing edges.

It is interesting to note that there is a correspondence between the reachability problem in Defi-
nition 3.1 and the graph-simplification problem stated above. Intuitively, based on Definition 3.2,
the problem of deciding all InterDyck-contributing edges should be as hard as computing Inter-
Dyck-reachability. We now establish the undecidability of computing all InterDyck-contribution
edges via a reduction from InterDyck-reachability. Note that InterDyck-reachability is undecid-
able even when restricted to the single-source-single-sink variant [17].
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Theorem 3.4. It is undecidable to compute all InterDyck-contributing edges in a graph G.

Proof. We show a reduction from the single-source-single-sink variant of InterDyck-
reachability. Given any single-source-single-sink InterDyck-reachability problem instance
Reach〈InterDyck,G〉, we first introduce a new Dyck language Lp with an alphabet ΣLp

= {�, �}
and ΣLp

∩ΣInterDyck = ∅. Define InterDyck′ = InterDyck�Lp . Let s and t be the source and sink

in graph G, respectively. We construct a new graph G ′ by inserting two additional edges s ′
�
−→ s

and t
�
−→ t ′. Based on the reduction, we can see that the edge s ′

�
−→ s is an InterDyck′-contributing

edge inG ′ iff t is InterDyck-reachable from s inG. It is straightforward to verify that the reduction
is decidable. �

To side-step the undecidability of graph simplification, we describe two novel relaxations in
Section 4. Here we define the notion of correctness of graph simplification, which is similar to
the concept of soundness in static analysis. Let ϕ be the set of all InterDyck-contributing edges
in G. Intuitively, a graph-simplification algorithm computes an over-approximating solution ϕ ′

(of “apparently contributing” edges). Therefore, if it determines an edge to be non-InterDyck-
contributing, the edge can be safely eliminated graph G. To sum up,

Definition 3.5 (Correctness). A graph-simplification algorithm is correct if and only if it computes
a solution ϕ ′ to the contributing-edge problem such that ϕ ′ ⊇ ϕ.

4 IDENTIFYING CONTRIBUTING EDGES

Central to our graph-simplification approach is the idea of eliminating non-InterDyck-
contributing edges in G. Due to Theorem 3.4, identifying non-L-contributing edges is as hard as
computing the L-reachability problem, and solving InterDyck-reachability, in general, is undecid-
able [17].

Our key idea is to cast the undecidable problem (i.e., identifying InterDyck-contributing edges
in a digraph G) to an easier problem (i.e., identifying Dyck-contributing edges in a bidirected
graph G ′) that admits an efficient polynomial-time solution. In particular, we give two forms of
relaxation:

— Graph Relaxation. We first relax the general directed graph G to a bidirected graph G ′ by
introducing reverse edges (Section 4.1); and

— Formulation Relaxation. We then relax the InterDyck-reachability problem in the bidirected
graph G ′ to the Dyck-reachability problem in a contracted graph (Lx -graph) derived from
G ′, where Lx represents a Dyck language in InterDyck (Section 4.2).

The benefit of our relaxations is that Dyck-reachability can be efficiently solved inO (m+n ·α (n))
time on a bidirected Lx -graph withm edges andn nodes [27]. The Dyck-reachability algorithm also
identifies an anchor-node property in Lx -graph. We utilize the anchor-node property to identify
the non-Dyck-contributing edges in the Lx -graph (Section 4.3). Finally, if an edge is not a Dyck-
contributing edge in the Lx -graph, its corresponding edge inG is a not an InterDyck-contributing
edge. Graph-simplification can be performed safely by eliminating those edges in G.

Figure 3 provides a roadmap to this section: it summarizes the relations among various lem-
mas. Combining these lemmas together, it provides a criterion for identifying—and removing—
non-contributing edges in G.
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Fig. 3. Summary of lemmas used in Section 4. Let Lx be a Dyck language in InterDyck. The alphabet ΣLx
=

Σo ∪ Σc of Lx can be partitioned into Σo and Σc representing open and close parentheses, respectively. Let

t ∈ ΣLx
.

4.1 Graph Relaxation: From G to G ′

In edge-labeled graphs, we say that two edges of the form u
�i−→ v and v

�i−→ u are reverse edges
for each other. Given an edge-labeled input graph G = (V ,E), we construct a relaxed graph
G ′ = (V ,E ′) by introducing additional reverse edges. In particular, the node set V ∈ G remains
unmodified. Let �i and �i be two matched open and close parentheses in InterDyck. The edge set
E ′ ∈ G ′ is constructed as follows:

— For each edge u
�i−→ v ∈ E, we insert both edges u

�i−→ v and v
�i−→ u into E ′;

— For each edge u
�i−→ v ∈ E, we insert both edges u

�i−→ v and v
�i−→ u into E ′.

Each edge e ∈ G is mapped to two corresponding edges in G ′, denoted as set h(e ). The size
of the edge set |E ′ | = 2|E | and relaxed graph G ′ can potentially be a multi-graph, i.e., between

two nodes u and v , there can be more than one edge u
t−→ v with a given label t . Based on the

construction of G ′, it follows immediately that InterDyck-reachability in G ′ over-approximates
InterDyck-reachability in G.

Lemma 4.1 (Relaxed Reachability inG ′). Given two nodesu andv , ifv is InterDyck-reachable
from u in G, node v must be InterDyck-reachable from u in G ′.

Corollary 4.2. If an edge e = u → v is an InterDyck-contributing edge in G, the corresponding
edges in h(e ) are InterDyck-contributing in G ′.

4.2 Formulation Relaxation: From InterDyck-Reachability to Dyck-Reachability

We now describe how to relax the problem of determining InterDyck-contributing edges to the
problem of determining Dyck-contributing edges in the bidirected graph G ′.

Let InterDyck be InterDyck = L1�L2� . . .�LN . Note that each Lx in InterDyck represents a
Dyck language for all x ∈ [1,N ]. Let Lx be a Dyck language and ΣLx

= {�1, �1, . . . , �k , �k }. Given a
valid InterDyck string s , we could indeed “extract” a substring s ′ by concatenating all Lx terminals
in s . The resulting string s ′ is always a valid Dyck string. For example, let s be a valid InterDyck
string “�1�2�2�2�2�1”. The “extracted” substring is “�1�2�2�1”, which is a valid Dyck string. In general,
let �i be a terminal in ΣLx

. It is straightforward to see that if �i is in a valid InterDyck string, �i

must belong to a valid Dyck (Lx ) string as well.
We extend the discussion about InterDyck strings to the InterDyck-reachability problem on

graphs. Consider an InterDyck-reachability instance Reach〈InterDyck,G ′〉. Rather than “extract-
ing” an Lx substring from an InterDyck string, we build a contracted graph called the Lx -graph
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from G ′. Intuitively, an Lx -graph is derived from G by maintaining only Lx -edges in G ′, merging
the nodes joined by any t-edge, and deleting any t-edges where t � Lx .

Definition 4.3 (Lx -Graph). Let Lx be a Dyck language. Given an input graphG ′, the Lx -graph is

constructed by replacing labels of u
t−→ v edges to ϵ-labels in G ′ where t � Lx .

Lemma 4.4. Let Lx ∈ InterDyck and t ∈ ΣLx
. If an edge u

t−→ v is InterDyck-contributing in G ′,
it is a Dyck-contributing edge in the Lx -graph.

4.3 Identifying Dyck-Contributing Edges

According to Definition 3.2, identifying Dyck-contributing edges requires computing Dyck-
reachability. The Lx -graph is essentially a bidirected graph with each edge labeled by a terminal
t in a Dyck language Lx . Dyck-reachability on bidirected graphs can be solved in O (m + n · α (n))
time [1].

4.3.1 Computing Dyck-Reachability in Lx -Graphs. In general, Dyck-reachable node pairs (u,v )
in a graph G = (V ,E) can be described as a binary relation Dyck over V × V . Specifically, a pair
(u,v ) ∈ Dyck iff node v is Dyck-reachable from u in G. The relaxed Lx -graph is a bidirected
graph. One property that is special for bidirected Dyck-reachability is that the Dyck relation on
a bidirected graph is an equivalence relation [27]: (i) it is reflexive and transitive based on the
Dyck grammar given in Equation (1) (see Section 3.1); and (ii) it is symmetric based on the G ′

construction given in Section 4.1.1 Due to the equivalence property, we can collapse all nodes that
belong to the Dyck relation into a single representative node, i.e., node v is Dyck-reachable from
u inG ′ iff u andv belong to the same representative node in the Lx -graph. However, we have only
the Lx -graph rather than the Dyck relation itself, so we are not in a position to find and collapse
all Dyck-reachable nodes. Instead, the collapsing can be done on-the-fly as Dyck-reachability is
computed.

Following the work of Chatterjee et al. [1], we summarize the intuition of the algorithm for

solving Dyck-reachability in Lx -graphs. When there are two incoming edges u
�i−→ w and v

�i−→ w
for a node w , the algorithm performs two operations:

— Node collapsing: The algorithm collapses two nodes u and v into a single representative
node n {u,v } and updates the edges of node n {u,v } based on u and v . Node n {u,v } inherits
the incoming and outgoing edges of u and v . To avoid any misunderstanding about the
original optimal Dyck-reachability algorithm in [1], we clarify that there is no concept of
merged nodes in the work of Chatterjee et al. [1]. Nodes with Dyck Relation are unioned
in a disjoint-set data structure. In our article, we assume they are merged into a concrete
representative node to facilitate our presentation.

— Edge merging: After the node collapsing of the nodes u,v there exists multiple n {u,v }
�i−→ w

edges. Remove the redundant edges until there is only one such edge remaining in the graph.
We regard it as edge merging.

Node collapsing and edge merging may introduce additional Dyck-reachable node pairs in the
graph. Therefore, we continue the process until there are no newly introduced Dyck-reachable
nodes. We refer to such an algorithm as procedure Opt-Dyck().

Lemma 4.5 (Correctness of Opt-Dyck [1]). In a bidirected Lx -graph, node v is Dyck-reachable
from nodeu iffu andv are in the same representative node after running Opt-Dyck() on the Lx -graph.

1The Dyck relation in a general digraph is not symmetric. Therefore, it is not an equivalence relation in the general case.
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Fig. 4. Anchor-k node example.

To facilitate further discussion, letGf denote the resulting graph after running Opt-Dyck() onG.
We define rep_node[·] as a mapping from a node inG to its representative node inGf . For example,
if u ∈ V (G ) is merged to the representative node uf ∈ V (Gf ), we write rep_node[u] = uf .

4.3.2 Anchor Nodes. Lemma 4.5 indicates that every Dyck-path in the Lx -graph is obtained via
edge merging in Opt-Dyck(). To identify Dyck-contributing edges in the Lx -graph, we leverage

the anchor node w of the two edges u
�k−−→ w and v

�k−−→ w merged by Opt-Dyck(). Intuitively, every
Dyck-path computed by Opt-Dyck() is associated with at least one such anchor node. Formally,
we have the following definition:

Definition 4.6 (Anchor Node). Node w is an anchor-�i node in an Lx -graph iff there exist nodes

u, v , and w ′ in the Lx -graph, such that there are two distinct edges u
�i−→ w and v

�i−→ w ′ existing
in the Lx -graph and rep_node[w] = rep_node[w ′] after running Opt-Dyck().

Example 4.7 (Anchor-node Example). Figure 4(a) presents an edge-labeled graph with a Dyck

path va

�1−→ vb

�2−→ vc

�2−→ vd

�1−→ ve

�1−→ vf

�1−→ vд . Figure 4(b) is the constructed Lp -graph after
node collapsing. For the graph G in Figure 4(a), the anchor-�2 node is vc , anchor-�1 nodes include
vb ,vd , and ve . To verify that node vc is an anchor-�2 node, without loss of generality, it suffices
to let w ′ = vc , u = vb , and v = vd according to Definition 4.6. The anchor-�2 node (vb ) can also
be detected during the execution of Opt-Dyck(). When the node collapsing happens because of

the two edges vb

�2−→ vc and vd

�2−→ vc , node vc will be marked as an anchor-�2 node. Similarly, to
verify that node vb is an anchor-�1 node, according to the definition, we can set w ′ = vd , u = va ,
and v = ve . It will also be marked as an anchor-�1 node when collapsing the nodes va and ve due

to the two edges va

�1−→ vb and ve

�1−→ vd .

Lemma 4.8. An edge u
�i−→ v is a contributing edge for Dyck-reachability in a bidirected Lx -graph

iff v is an anchor-�i node in the Lx -graph. Similarly, an edge u
�i−→ v is a contributing edge for

Dyck-reachability in an Lx -graph iff u is an anchor-�i node in the Lx -graph.

Proof. Without loss of generality, we consider theu
�i−→ v case. We prove the forward direction

by induction on the length of the Dyck-path that involves the edge u
�i−→ v .

Base case. The contributing edgeu
�i−→ v is involved in a Dyck-path of length 2. There must exist

another nodew such thatv
�i−→ w . Because Lx -graph is bidirected, we havew

�i−→ v ∈ E. Therefore,
v is an anchor-�i node.

Inductive step. Assume that the lemma holds for contributing edges involved in a Dyck-path

with length less than or equal to 2p. Suppose that a contributing edge e = u
�i−→ v is involved in
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a Dyck-path of length 2p + 2 and not involved in any Dyck-path with length less or equal to 2p.
Consider the Dyck grammar rule S → �iS�i | SS .

— If the Dyck-path is generated based on the first rule, edge e is the first edge in the Dyck-path.
There must exist nodesv ′,w in the same Dyck-path such that the subpath betweenv andv ′

is also a Dyck-path, and v ′
�i−→ w ∈ E. By Lemma 4.5, we have rep_node[v] = rep_node[v ′].

Based on the bidirectedness, we have u
�i−→ v,w

�i−→ v ′ ∈ E. By the definition of anchor-�i

nodes, we conclude that v is an anchor-�i node.
— If the Dyck-path is generated by the second rule, edge e is involved in a Dyck-path with

length less than or equal to 2p, thus v is an anchor-�i node.

Now we prove the backward direction. Suppose that v is an anchor-�i node in the Lx -graph.
According to the definition, there exists a node v ′ such that rep_node[v] = rep_node[v ′], and

there exists another node w with w � u and edge w
�i−→ v ′ ∈ E (Lx ). Because rep_node[v] =

rep_node[v ′], i.e., v and v ′ are merged by Opt-Dyck(), there exists a Dyck-path p = v → v ′. By

utilizing the bidirectedness of the Lx -graph, we have v ′
�i−→ w ∈ E (Lx ), as well. Then, u

�i−→ v , p,

and v ′
�i−→ w ∈ E (Lx ) form a new Dyck-path. Therefore, u

�i−→ v is a contributing edge. �

To obtain the main theorem, we revisit Figure 3. In general, if an edge u → v is InterDyck-
contributing in G, it must be an InterDyck-contributing edge in relaxed graph G ′ (Corollary 4.2).
Any InterDyck-contributing edge in G ′ must be a Dyck-contributing edge in an Lx -graph de-
rived fromG ′ (Lemma 4.4). Finally, the problem of deciding Dyck-contributing edges is equivalent
to deciding the corresponding anchor-�i nodes in the Lx -graph (Lemma 4.8). Putting everything
together, we have the Theorem 4.9:

Theorem 4.9. Let Lx be a Dyck language in InterDyck and �i , �i ∈ ΣLx
. If either an edge u

�i−→ v

or an edge v
�i−→ u is contributing to InterDyck-reachability in G, the node v is an anchor-�i node in

the Lx -graph.

Corollary 4.10. If a node v is not an anchor-�i node in the Lx -graph, both edges u
�i−→ v and

v
�i−→ u are non-contributing edges for InterDyck-reachability in G.

Thus, the proposed graph-simplification algorithm can remove from G all edges that meet the
criterion given in Corollary 4.10.

5 GRAPH-SIMPLIFICATION ALGORITHM

This section discusses the graph-simplification algorithm. Section 5.1 describes the key steps in
the algorithms. Section 5.2 presents the main algorithm. Section 5.3 discusses the correctness and
complexity of the simplification algorithm. Section 5.4 extends our graph-simplification algorithm
to a variant that works more effectively when the graph G is already bidirected.

5.1 Key Steps

There are two key steps in the graph simplification: (1) constructing the Lx -graphs and (2) identi-
fying all anchor-�i nodes.

5.1.1 Lx -Graph Construction. Consider an interleaved Dyck language InterDyck = L1 � . . . �
LN . Given a relaxed graph G ′, to identify the anchor-�i nodes, our algorithm needs to construct
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Fig. 5. Collection of anchor-�i node information. Figure 5(a) repeats the graph of our motivating example

from Figure 1(b). Graph simplification involves repeated application of Algorithm 2. Figure 5(b) illustrates the

Lp -graph construction result based on Section 5.1.1 during the first application of the algorithm. Figure 5(c)

gives the corresponding graph after running Opt-Dyck-Modified described in Section 5.1.2. In Figures 5(b)

and (c), each �, � edge has a corresponding reverse �, � edge. We omit reverse edges for brevity.

Procedure 1: GetLxGraph(G,Lx )

Input : Edge-labeled relaxed bidirected graph G = (V , E ), a Dyck language Lx
Output : An Lx -graph Gx

1 rep_node← a disjoint-set of size |V |.
2 foreach u

l−→ v ∈ E do
3 if l � ΣLx then

4 E ← E \ {u l−→ v }
5 E ← E ∪ {u ϵ−→ v }

6 return Gx = (V , E )

an Lx -graph for each x ∈ {1, . . . ,N }. We construct an Lx -graph by replacing non-Lx edge-labels
by ϵ-labels in the graph of G ′. Procedure 1 gives the Lx -graph-construction algorithm. For each
non-Lx edge, Line 4 removes the original non-Lx edge, and line 5 adds the edge back with a new
ϵ-label.

We describe the Lx -graph construction of the motivating example in Figure 5(a). Recall that we
have InterDyck = Lb �Lp . We present how to construct the Lp -graph for the motivating example.

The procedure iterates through non-Lp edges. In Figure 5(a), the first non-Lp edge is vx

�д

−−→ va

because �д∈ ΣInterDyck \ ΣLp
. The edge vx

�д

−−→ va is replaced by vx
ϵ−→ va . We continue replacing

non-Lp edges until there are no more non-Lp edges. Figure 5(b) depicts the final Lp -graph.

5.1.2 Anchor-�i Node Identification. The second step in graph simplification is anchor-�i node
identification. We modify the Opt-Dyck() algorithm by Chatterjee et al. [1] to collect the anchor-
�i node information. We denote the modified version as Opt-Dyck-Modified(). Recall that Opt-
Dyck() tracks the number of incoming edges with the same open-parenthesis label for each node

in the graph. If there are two incoming edges vb

�i−→ va and vc

�i−→ va with the same edge label �i ,
then the Opt-Dyck algorithm performs a node-collapsing between node vb and vc .

Opt-Dyck-Modified() leverages the node-collapsing process in Opt-Dyck() to mark anchor-�i

nodes. In particular, when Opt-Dyck() detects two incoming edges vb

�i−→ va and vc

�i−→ va with
an open-parenthesis edge label �i , Opt-Dyck-Modified() marks the nodeva as an anchor-�i node.
After the Opt-Dyck-Modified() finishes, we can retrieve the set of anchor-�i nodes in theLx -graph
based on the marking in the merged graph. For any nodev in the Lx -graph, it is an anchor-�i node
iff rep_node(v) is marked as an anchor-�i node by Opt-Dyck-Modified().
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ALGORITHM 2: The graph simplification iteration.

Input : Edge-labeled directed graph G = (V , E ), an InterDyck language L = L1 � . . . � Ln ;
Output : A new edge-labeled directed graph Gf

1 contrib_edges← ∅
2 G′ ← RelaxedGraph(G)

3 for i ← 1 to n do
4 G′′i ← GetLxGraph(G′, Li )

5 anchor_nodes← Opt-Dyck-Modified(G′′i )
6 foreach v_l ∈ anchor_nodes do
7 foreach x ∈ In[v] do

8 foreach edge e = x
t−→ v do

9 if t == l then
10 contrib_edges← contrib_edges ∪{e }

11 foreach x ∈ Out[v] do

12 foreach edge e = v
t−→ x do

13 if t == l then
14 contrib_edges← contrib_edges ∪{e }

15 Gf ← (V ,contrib_edges )

16 return Gf

Notice that the original Opt-Dyck algorithm runs in timeO (m+n ·α (n)), where α is the inverse
Ackermann function [1]. After the modification, the extra running time for each node-merging is
O (1), and thus the complexity of Opt-Dyck-Modified is still O (m + n · α (n))

Example 5.1. We continue our example using the graph shown in Figure 5(b). We apply Opt-
Dyck-Modified() on this Lp -graph. Figure 5(c) gives the resulting graph. There exist two �12-edges
pointing to node {vs , ret2} and two �8-edges pointing to the node {vt , ret1}. Therefore, Opt-Dyck-
Modified() collects the information that nodesvt , ret1 are anchor-�8 nodes andvs , ret2 are anchor-
�12 nodes.

5.2 The Simplification Algorithm

Algorithm 2 gives the graph-simplification algorithm. In lines 1–2, contrib_edges is initialized to
an empty set. It contains the set of potential InterDyck-contributing edges in the original graph
G when the algorithm terminates. We then obtain the relaxed graphG ′ defined in Section 4.1. The
loop iterates over each Dyck language Lx in InterDyck = L1 � . . . � LN (lines 3–14). It first
builds the Lx -graph based on Procedure 1. After we construct the Lx -graph, the algorithm invokes
Opt-Dyck-Modified() described in Section 5.1.2 to collect anchor-�i nodes in the Lx -graph. The
variable anchor_nodes stores a set of anchor nodes of the form v_l , where v is the node in the Lx -
graph, l is the open-parenthesis edge label for the corresponding anchor. In lines 6–14, for each
anchor node, we add its corresponding contributing edges to the set contrib_edges. After collecting
the contributing edges for each Lx -graph, contrib_edges, the union is returned as the new edge
set of the graph. It serves as the input for the next iteration (lines 15–16). The graph-simplification
algorithm terminates if there are no edges removed in one iteration.

Example 5.2. We illustrate how Algorithm 2 eliminates non-contributing edges in the original
graph of our motivating example, i.e., Figures 1(b) and 5(a). After running the Lx -graph con-
struction (Procedure 1) and Opt-Dyck-Modified for both the parenthesis language Lp and the
bracket language Lb , Figure 6(a) gives the anchor-�i nodes identified by the first application of
Algorithm 2. It identifies the non-contributing edges based on Lemma 4.8. For instance, provided
that vs is an anchor-12 nodes, all the incoming �12 edges to vs and outgoing �12 from vs edges are
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Fig. 6. Elimination of non-contributing edges. Figure 6(a) lists all anchor-k nodes identified in the first ap-

plication of Algorithm 2. Figure 6(b) gives the simplified graph after the first application. It is the same as

Figure 2(a).

contributing edges. By removing the non-contributing ones, we get the resulting graph in Fig-
ure 6(b). By applying Algorithm 2 two more times, we obtain the final graph, shown in Figure 2(c).

5.3 Correctness and Complexity

We establish the correctness of Algorithm 2 and analyze its complexity. In lines 6–10, the algorithm
collects all the incoming open-parenthesis anchor-labeled edges and outgoing close-parenthesis
anchor-labeled edges. Due to Theorem 4.9, all contributing edges are in contrib_edges. Then it suf-
fices to show that the derived Lx -graph in line 4 is correct and the Opt-Dyck-Modified() collects
all anchor-�i nodes.

Lemma 5.3. Opt-Dyck-Modified() collects all anchor-�i nodes for each Lx -graph.

Proof. Opt-Dyck-Modified() tracks the incoming edges incident on the same node with the
same open-parenthesis label, performs a node collapsing, and generates an anchor-�i node. For
each anchor-�i node generated, the previous two (or more) incoming edges incident on the
same node become one. Suppose that an anchor-�i node has not been collected by Opt-Dyck-
Modified(); then there will be two incoming edges to the anchor-�i node with the same open-
parenthesis label, which contradicts the fact that Opt-Dyck-Modified() is guaranteed to find every
pair of incoming edges with the same open-parenthesis label [1]. �

Theorem 5.4. For an InterDyck language L1 � . . . � LN and a graph G, Algorithm 2 computes
an over-approximation ϕ ′ of all InterDyck-contributing edges in G, i.e., ϕ ′ ⊇ ϕ where ϕ denotes the
exact solution.

Next, we analyze the complexity of each iteration of the simplification. In Algorithm 2, the loop
body in lines 3–14 contains two procedure calls: GetLxGraph and Opt-Dyck-Modified(). Given
a graph with m edges, the time complexity of Opt-Dyck-Modified() is O (m + n · α (n)) [1]. The
GetLxGraph procedure performs a linear traversal of edges; thus, its complexity is O (m). The
overall algorithm iterates over all N Dyck languages in InterDyck. N is usually considered as a
constant. Therefore, the time complexity of Algorithm 2 is O (m + n · α (n)).

5.4 Graph Simplification for Bidirected Input Graphs

In practice, many client analyses work on graphs that are already bidirected: for each edgeu
�a−−→ v ,

there is already a corresponding reverse edge v
�a−−→ u, and vice versa. Bidirectedness arises in

formulations of alias analyses [16, 23, 27]. This section proposes a variant of our simplification
algorithm that works effectively when the graph of the original problem is already bidirected.
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Bidirectedness introduces a special challenge for graph simplification because every edge now
forms an InterDyck-path with its reverse edge, and therefore every edge in a bidirected graph is

“contributing” as defined in Definition 3.2. For example, for an arbitrary edgeu
�a−−→ v , there always

exists an InterDyck-path: u
�a−−→ v

�a−−→ u, wherev
�a−−→ u is the reverse edge of u

�a−−→ v in the graph.
Obviously, this kind of InterDyck-path never causes there to be an InterDyck-reachable node
pair (u,v ), where u � v . We define these InterDyck-paths to be trivial InterDyck-paths.

Definition 5.5 (Trivial InterDyck-Path). An InterDyck-path p is trivial if (i) it starts and ends
at the same node u, and (ii) in the realized InterDyck path string R (p), each open parenthesis t of

an edge u
t−→ v is always matched with the close parenthesis t ′ of the corresponding reverse edge

v
t ′−→ u.

Based on Definition 5.5, trivial InterDyck-paths cause every edge of a bidirected graph to be a
contributing edge. However, trivial InterDyck-paths only identify reflexive InterDyck-reachable
node pairs of the form (u,u), which are InterDyck-reachable even without these paths, because
the empty string is in the InterDyck language. Therefore, if an edge is only involved in trivial
InterDyck-paths, removing the edge does not affect any InterDyck-reachable node pairs. Con-
sequently, for bidirected graphs, we only want to track edges that are involved in non-trivial In-
terDyck-paths. Next, we extend the original definition of contributing edges (Definition 3.2) to
bidirected graphs.

Definition 5.6 (Contributing Edges for Bidirected Graphs). In a bidirected graph G, an edge is
considered to be contributing in G iff it is involved in a non-trivial InterDyck-path.

To identify contributing edges in bidirected graphs G, our insight is to divide all contributing
edges into two categories based on the corresponding “matching edges.” Here we define the con-
cept of matching edges to facilitate the discussion.

Definition 5.7 (Matching Edges). In an InterDyck-path p, an edge e = u
t−→ v is a matching edge

of another edge e ′ = u ′
t ′−→ v ′ in the path p, iff t , and t ′ form a pair of matching parentheses in the

realized string R (p). e ′ is also a matching edge for e .

The two categories of contributing edges are:

(i) Edges of the form e = u
t−→ v such that there exists an InterDyck-path in which the match-

ing edge of e is not its corresponding reverse edge. For example, in Figure 7(a), the edge

vd

�2−→ ve is in a non-trivial InterDyck-path vd

�2−→ ve

�2−→ vf . In this path, the matching

edge ofvd

�2−→ ve isve

�2−→ vf , which is not the reverse edge ofvd

�2−→ ve . Therefore,vd

�2−→ ve

is a contributing edge in category (i).

(ii) Edges of the form e = u
t−→ v such that in every non-trivial InterDyck-path that contains e ,

e’s matching edge e ′ is the reverse edge of e .2 For example, in Figure 7(a), the edgevb

�1−→ vc is

in a non-trivial InterDyck-path va

�f

−−→ vb

�1−→ vc

�f

−−→ vd

�2−→ ve

�2−→ vf

�д

−−→ vc

�1−→ vb

�д

−−→ vд .

And its matching edge can only be its reverse edge vc

�1−→ vb , because it is the only �1-edge

in the graph. Therefore, the edge vb

�1−→ vc is a contributing edge in category (ii).

2In Section 5.4.2, we show that the concept defined here is too broad, and refine the concept of category (ii) contributing

edges to a more desirable subset of them.
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Fig. 7. A bidirected input graph.

For graph simplification, we need to collect contributing edges in both categories, and, at the
same time, avoid including edges that are only involved in trivial InterDyck-paths as much as
possible. For contributing edges in category (i), it suffices to run the anchor-node-identification
algorithm of Section 5.2 on the original input graphG. However, anchor-node-identification cannot
recognize contributing edges in category (ii). Next, we discuss the challenges and our approach to
identifying contributing edges for both categories.

5.4.1 Identifying Category (i) Contributing Edges. Because the input graph G is bidirected, its

relaxed graph G ′ is a multi-graph (see Section 4.1). For example, if u
�i−→ v is an edge of G, G ′

contains two edges of the form u
�i−→ v , and thus there exist at least two edges with the iden-

tical open-parenthesis label that point to the same node v . Consequently, the result of running
the anchor-node-identification algorithm onG ′ returns many edges that only contribute to trivial
InterDyck-paths. However, thanks to the bidirectedness of the graph G, it is feasible to perform
anchor-node-identification directly on the original input graph G instead of the relaxed graph G ′.
Running on the original graph, the anchor-node-identification algorithm collects all contributing
edges whose matching edges are not their reverse edges as described in Section 4.3, i.e., all the con-
tributing edges in category (i). If the algorithm works on the original graphG directly, there is only
one �i -labeled edge that points to nodev , and consequently,v is not an anchor node. In essence, by
working on G, the anchor-node-identification algorithm ignores the trivial InterDyck-paths that
contain e1 and e2. Thus, by not having the additional edges in the relaxed graph G ′, the anchor-
node-identification algorithm benefits from avoiding node collapsing introduced by trivial Inter-
Dyck-paths and it further avoids recognizing trivial contributing edges in the original graph G.

5.4.2 Identifying Category (ii) Contributing Edges. For a contributing edge e in category (ii), its
matching edge can only be its reverse edge in non-trivial InterDyck-paths. Identifying contribut-
ing edges of a category (ii) requires matching-edge information for other edges in the correspond-
ing InterDyck-paths. The aforementioned anchor-node-identification algorithm is not aware of
matching-edge information for any other edges in the InterDyck-paths, thus, it cannot identify
the category (ii) contributing edges. Consider the bidirected graph with a non-trivial InterDyck-

path va

�f

−−→ vb

�1−→ vc

�f

−−→ vd

�2−→ ve

�2−→ vf

�д

−−→ vc

�1−→ vb

�д

−−→ vд in Figure 7(a). It is a non-trivial
InterDyck-path, because it does not start and end at the same node. Moreover, not all edges have

their reverse edges as matching edges. For example, the edge vd

�2−→ ve has the matching edge

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 11. Publication date: May 2022.



11:18 Y. Li et al.

ve

�2−→ vf instead of its reverse edge ve

�2−→ vd . Thus, the edge vb

�1−→ vc is a category (ii) contribut-
ing edge in this bidirected graph. Note that there is only one �1-edge that points to nodevc . Because
vc is not an anchor node for label “�1” according to Definition 4.6, the anchor-node-identification

algorithm does not identify vb

�1−→ vc as a contributing edge.
Another observation for category (ii) contributing edges is that these edges can be “trivially” in-

volved in non-trivial InterDyck-paths. We give an example to illustrate such contributing edges.

Consider the non-trivial InterDyck-path vd

�2−→ ve

�2−→ vf

�д

−−→ vc

�д

−−→ vf . Clearly, the vf

�д

−−→ vc

edge is contributing to the path. However, by removing the self-cycle vf

�д

−−→ vc

�д

−−→ vf , the path
is still an InterDyck-path that starts with vd and ends with vf . Thus, we only want to collect
contributing edges involved in an “irreducible” part for at least one InterDyck-path. An Inter-

Dyck-path p is reducible if there exists a node u in the path p = vs �
a

u �
b

u �
c

vt where each

of vs �
a

u,u �
b

u,u �
c

vt is a sequence of edges with the realized strings a,b, c , such that the

path p ′ = vs �
a
u �

c
vt is still an InterDyck-path. We say that p ′ is the reduced InterDyck-path

of p. An InterDyck-path is irreducible if it is not a reducible InterDyck-path. The sequence of

edges u �
b

u is called the reducible part of the InterDyck-path p. The edges that do not belong
to the reducible part are called the irreducible part of the path. We denote these edges as strictly
contributing edges. We provide a formal definition for these edges.

Definition 5.8 (Strictly Contributing Edges). Consider a contributing edge e in a bidirected edge-
labeled graph G. Edge e is strictly contributing to InterDyck-reachability if there exists an irre-
ducible InterDyck-path p and the edge e is in the path p.

Suppose a contributing edge is only in the reducible part of an InterDyck-path p connect-
ing nodes vs and vt . Removing the edge from the graph G does not make vs and vt InterDyck-
unreachable, because the reduced path p ′ of p still exists in the graph. it In light of these observa-
tions, we refine our goal: instead of trying to identify all contributing edges in category (ii), the
goal becomes to identify the strictly contributing ones. If a contributing edge e is not strictly con-
tributing, removing such an edge does not affect any InterDyck-reachable node pairs. We first
present Lemma 5.9, which shows a method to generate a reduced InterDyck-path. Then we intro-
duce Lemma 5.10, which shows a special property of strictly contributing edges in the irreducible
part of the InterDyck-path.

Lemma 5.9 (Reducible InterDyck-Path). In a bidirected graph, consider a non-trivial

InterDyck-path p = x �
a

u
t−→ v �

b
v

t ′−→ u �
c

y where each of x �
a

u,v �
b

v,u �
c

y rep-

resents a sequence of edges with the realized strings a,b, c . In particular, edge e = u
t−→ v is the reverse

edge of e ′ = v
t ′−→ u. For the realized string R (p) = “atbt ′c”, if its sub-string “tbt ′” is an InterDyck

word, then the path p ′ = x �
a

u �
c

y is also an InterDyck-path connecting the same start node x
and end node y in p, i.e., p ′ is a reduced InterDyck-path of p.

The lemma describes one possible approach to generate a reduced InterDyck-path. The correct-
ness follows from the definition of InterDyck language: suppose that “ac” is not an InterDyck
word and “tbt ′” is an InterDyck word, the word “atbt ′c” cannot be an InterDyck word because
the unmatched parentheses in “ac” are still unmatched in “atbt ′c”. With the approach to generate
reduced InterDyck-paths, by applying this approach repeatedly, the resulting path containing
the strictly contributing edge exhibits a special property. We present this property in Lemma 5.10,
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and our algorithm exploits this property to identify the set of strictly contributing edges in
category (ii).

Lemma 5.10 (Matching-Edge Property for Strictly Contributing Edges). Let e = u
t−→ v

be a category (ii) strictly contributing edge. There must exist an InterDyck-path p with the following
properties: (i) for the edge e and for its reverse edge e ′, there exists a pair of matching edges e1, e2, such
that p = . . . e1 . . . e . . . e2 . . . e

′ . . . or p = . . . e . . . e1 . . . e
′ . . . e2 . . . ; and (ii) if t is in Σ(Lx ) of the

InterDyck language L1 � L2 � . . . � LN , then the edge labels of e1, e2 described in property (i) are
not in the alphabet Σ(Lx ) of the language of Lx .

Proof. Consider a strictly contributing edge e = u
t−→ v in category (ii) with an open-

parenthesis label t . Because edge e is strictly contributing, removing e from the original graph
G will make some node pair (vs ,vt ) InterDyck-unreachable. Then there exists a shortest Inter-

Dyck-path of the form p = vs �
a

u
t−→ v �

b
v

t ′−→ u �
c

vt . According to Lemma 5.9, tbt ′ cannot

form an InterDyck-word, otherwise, the path is not the shortest one. Thus, some edge e1 inv �
b
v

has a matching edge e2 in vs �
a

u or u �
c

vt . Therefore, we have proved the property (i) of the
lemma.

Assume for the sake of contradiction that the edge labels of e, e1, and e2 are all in Σ(Lx ).
According to the property (i) that we just proved, p = . . . e1 . . . e . . . e2 . . . e

′ . . . or p =

. . . e . . . e1 . . . e
′ . . . e2 . . . . Note that e is the matching edge of e ′, and e1 is the matching edge of e2.

Consider the realized string R (p) ifp = . . . e1 . . . e . . . e2 . . . e
′ . . . ; the label of e1 cannot match with

the label of e2 because the label of e is still unmatched for the Lx language. By a similar argument,
if p = . . . e . . . e1 . . . e

′ . . . e2 . . . , the realized string R (p) cannot be a valid InterDyck-word either.
Thus, the assumption that the edge labels of e, e1, and e2 are all in Σ(Lx ) contradicts the fact that
p is an InterDyck-path. This completes the proof of the property (ii) of the lemma. �

Consider the example in Figure 7(a). We illustrate how Lemma 5.10 applies to the edge e = vb

�1−→
vc . It is a strictly contributing edge in category (ii), i.e., in any InterDyck-path, its matching edge

is always its reverse edge e ′ = vc

�1−→ vb . Recall that we use Lb to denote the Dyck language for

brackets and Lp to denote the Dyck language for parentheses. The Lb � Lp -path p = va

�f

−−→ vb

�1−→

vc

�f

−−→ vd

�2−→ ve

�2−→ vf

�д

−−→ vc

�1−→ vb

�д

−−→ vд has the format of p = . . . e1 . . . e . . . e2 . . . e
′ . . . with

e1 = va

�f

−−→ vb and e2 = vc

�f

−−→ vd . The edge vb

�1−→ vc also has the label “�1” in the Dyck language
Lp , with the labels of the two matching edges e1, e2 in the alphabet of Lb .

We say an edge e is in between two edges e1, e2 in a path p, if the path p has the form p =
. . . e1 . . . e . . . e2. Lemma 5.10 shows that for a strictly contributing edge e in category (ii) and its
reverse edge e ′, one of them must be in between a pair of matching edges in some InterDyck-paths.
In our algorithm that identifies the strictly contributing edges in category (ii), we first identify all
the pairs of matching edges. Then we collect all the edges between them as a superset of strictly
contributing edges. Algorithm 3 describes the approach to identify strictly contributing edges. In
Algorithm 3, step 1 builds the Lx -graph for the original input graph. Step 1 is the prerequisite for
step 2 to find all matching edge pairs in the original graph. In step 2, the anchor-node-identification

algorithm from Section 4.3 finds all pairs of edges with the form u
t−→ v and w

t−→ v . Due to the

bidirectedness, the algorithm finds all the matching edges u
t−→ v and v

t ′−→ w in the Lx -graph.
Step 2 collects the corresponding nodes in the original graph as a preparation for step 3 to compute
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ALGORITHM 3: Strictly Contributing Edge Identification for category (ii)

Step 1: Build the Lx -graphs as described in Section 5.1.1 for each Lx language;

Step 2: When performing anchor-node identification on Lx -graphs, if there is a node collapsing

introduced by edges u
t−→ v and w

t−→ v , find the corresponding nodes of v in the original graph G. The

corresponding nodes for v in the original graph are denoted as rep_node(v);

Step 3: For every edge e = (v1,v2), if v1,v2 ∈ rep_node(v) , add e into the set of contributing edges.

all the edges between them. Step 3 computes all the edges connecting the nodes from step 2, so
they are the edges that are between the matching edges in the InterDyck-paths.

Theorem 5.11 (Correctness of Algorithm 3 ). Algorithm 3 identifies a set of edges C . If an
edge e is in category (ii) and strictly contributing, then e ∈ C .

Proof. According to Lemma 5.10, if a non-trivial InterDyck-path contains a strictly contribut-
ing edge e in category (ii), either e or its reverse edge e ′ is in between two matching edges e1 and e2.
At the same time, the labels of e1, e2 are not in the same Dyck language as the label of e . Without
loss of generality, assume that e is the edge between e1 and e2, and the L1 � . . . � Lk -path p has the

form p = . . . e1 . . . e . . . e2 . . . . Let the three edges be e = u
le−→ v , e1 = a1

l1−→ b1, and e2 = a2
l2−→ b2

with le ∈ Lx and l1, l2 ∈ Lj (i � j ). There is no unmatched Lj -edge between e1, e2 in the path p,
otherwise, e1 cannot match with e2. Thus, the nodes u,v,b1,a2 in the original graph will be col-
lapsed into one node, denoted by vu,v,b1,a2

, in the Lj -graph. In step 1, Algorithm 3 constructs all
Lx -graphs. In step 2, in the Lj -graph, e1 and e2 will induce a node collapsing , and the algorithm
will collect a set of corresponding nodes for node vu,v,b1,a2

in the original graph, which includes
nodes u,v,b1,a2. Thus, Algorithm 3 identifies the strictly contributing edge e connecting between
these corresponding nodes in the original graph and in step 3. The algorithm safely includes e in
the resulting set of edges. We show that Algorithm 3 identifies a superset of strictly contributing
category (ii) edges. �

We can bound the complexity of Algorithm 3 as follows. Because to check whether rep_

node(v1) = rep_node(v2) for an edge e = (v1,v2) requires only constant time; thus the algorithm
for identifying strictly contributing category (ii) edges still takes withinO (m) time which does not
increase the overall complexity for the simplification algorithm.

Example 5.12. We illustrate how Algorithm 3 identifies the strictly contributing edge vb

�1−→ vc .

Note that the edgevb

�1−→ vc is a contributing edge in category (ii), and the edge cannot be removed
from the original graph, because it is involved in the only InterDyck-path that connects nodes
va andvд . Recall that we denote the Dyck language for parentheses by Lp , and the Dyck language
for brackets by Lb . Step 1 builds the Lb -graph for the original input graph. It facilitates finding
the pairs of matching edges in the original graph G. Figure 7(b) shows the result of the Lb -graph

construction. In step 2, the node collapsing ofva andvd,e,f via edgesva

�f

−−→ vb,c andvd,e,f

�f

−−→ vb,c

indicates that in the original graph va

�f

−−→ vb and vd

�f

−−→ vc are matching edges. Step 3 collects all

the edges between pairs of matching edges, and thus the algorithm identifies the edge vb

�1−→ vc

(which is in between va

�f

−−→ vb and vd

�f

−−→ vc ) as a strictly contributing edge in category (ii).
Note that the original anchor-node-identification algorithm in Section 5.1.2 cannot identify the

vb

�1−→ vc edge as a contributing edge, because there is no other �1-edge in the Lp -graph.
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6 EVALUATION

We implemented the graph-simplification algorithm, and—using three different InterDyck-
reachability solvers—applied it to the problem of a context- and field-sensitive taint analysis for
Android applications [9]. The experiments were performed on a 16 GB memory machine with an
Intel Xeon 2.10 GHz CPU, running Ubuntu 18.04.

We compared three InterDyck-reachability algorithms on both the original and simplified
graphs. Our evaluation focused on addressing the following three research questions:

— RQ1: How does graph size influence the size reduction and the efficiency of the simplifica-
tion algorithm?

— RQ2: How much can graph simplification improve the performance and precision of various
InterDyck-reachability algorithms?

— RQ3: Do different InterDyck-reachability algorithms benefit similarly from graph simpli-
fication? For which of the InterDyck-reachability algorithms is the performance improved
the most by graph simplification?

6.1 Experimental Setup

The Client Analysis. The experiment was conducted with a context- and field-sensitive taint anal-
ysis for Android applications [9], applied to 95 Google App-store applications. Context-sensitivity
is captured by a Dyck language Lp , where each open parenthesis �i represents a method call, and a
matching close parenthesis �i represents a corresponding return. The analysis uses another Dyck
language Lb to encode field sensitivity, where an open bracket �f represents an assignment to
field f and a close bracket �f represents an access on field f . Therefore, the analysis is based on
InterDyck-reachability where InterDyck = Lb � Lp .

We performed taint analysis on both the original and simplified graphs. The set of subject An-
droid applications includes the top 30 free apps, as well as some popular apps in the Editor’s Choice
list as of January 2015. We extracted the taint-analysis graphs using the tools from the work of
Huang et al. [9]. Note that the original taint analysis [9] is demand-driven, while ours is exhaus-
tive. The tool successfully generates graphs from 95 out of the 150 Google store apps provided
in the implementation.3 For each benchmark, we apply graph simplification iteratively until the
simplification procedure cannot remove any additional non-contributing edges.

The 95 obtained taint-analysis graphs have various sizes, ranging from a few hundred nodes to
more than 100,000 nodes. On average, each graph consists of 40,129 nodes and 147,009 edges. These
taint-analysis graphs also contain more call/return edges than field read/write edges. On average,
each taint-analysis graph has 21,559 different calls/returns and 2,250 different field accesses.

InterDyck-Reachability Algorithms. We used the following three InterDyck-reachability algo-
rithms as the graph-reachability engine for variants of the taint analysis:

— CFL-reachability algorithm [16]. This method is the traditional over-approximation for In-
terDyck-reachability. To approximate Lb � Lp , we used a regular language Rp , presented
in Figure 8, to over-approximate Lp . The language Lb � Rp is still context-free, so one can
apply the CFL-reachability algorithm to solve the (Lb � Rp )-reachability problem.

— SPDS-reachability algorithm [21]. In our client analysis, the SPDS separates the analysis into
a context-insensitive, field-sensitive analysis and a context-sensitive, field-insensitive anal-
ysis. Each problem can be effectively formulated as a CFL-reachability problem. The SPDS
algorithm solves them independently and intersects the results.

3Both the implementation and the subject apps are publicly available at https://github.com/proganalysis/type-inference.
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Fig. 8. A finite-state automaton that approximates a Dyck language Li . We use �-label to represent an arbi-

trary open parenthesis label.

Fig. 9. Amount of graph reduction, and running time of the graph-simplification algorithm as a function of

graph size.

— LCL-reachability algorithm [28]. The LCLs properly contain the InterDyck languages. Un-
like CFL- and SPDS-reachability, LCL-reachability precisely models InterDyck-reachability.
The LCL-reachability algorithm, in contrast, is an over-approximating algorithm, which
means that it may return a superset of the exact result, i.e., there may be pairs of nodes
that are connected by an accepting-state summary edge that is not InterDyck-reachable.

We implemented all algorithms in C++. All experiments were repeated three times, and we
report the average of the three trials to improve the reliability of the collected results.

6.2 RQ1: Graph-Simplification Efficiency

Our graph-simplification algorithm reduces an original graph G to Gf . We define the graph-

reduction ratio as r =
|E (Gf ) |
|E (G ) | . Figure 9(a) presents the simplification results w.r.t. ratio r . On

average, r = 0.743, indicating that the other 25.7% edges have been removed from the original
graph G by applying the graph-simplification technique.

As graph size increases, Figure 9(a) indicates that there is a very slight trend for ratio r to increase.
However, for most graphs, the reduction ratio is below 0.8, even for large graphs with around 400K
edges. Thus, simplification can consistently remove a significant number of edges.

In terms of the running time, graph simplification is much faster than the InterDyck-
reachability algorithms in most cases. The only exception is when the graph size is very small
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Table 2. Timeout Statistics in the Experiments

Finished Finished Timed out

on G,Gf only on Gf on G,Gf

LCL 41 13 41

SPDS 9 5 81

CFL 5 2 88

(i.e., when the number of edges is less than 150), the simplification procedure can take time
comparable to the InterDyck-reachability algorithms. Figure 9(b) gives the relationship between
graph size and running time of the graph-simplification algorithm. It demonstrates that the asymp-
totic running time of the algorithm is close to linear in the size of the (original) graph.

Summary. On average, after the graph-simplification algorithm, there are 74.3% of the edges
remaining in the simplified graphs. The algorithm can consistently remove more than 20% of the
edges in large graphs. The running time of the simplification algorithm is almost linear in prac-
tice. The linear-time performance allows it to serve as a pre-processing step for an InterDyck-
reachability algorithm.

6.3 RQ2: Performance and Precision Improvement of InterDyck-Reachability

Algorithms

Performance. We set a time budget of 300 seconds for all InterDyck-reachability algorithms.
Table 2 presents the timeout information of different algorithms. Typically, the CFL-reachability
algorithm runs out of time for graphs with more than 1 K edges. The SPDS-reachability algorithm
runs out of time for graphs with more than 5 K edges. The LCL-reachability algorithm usually
finishes processing graphs with fewer than 70 K edges within the time budget.

We use the following metric to the measure performance improvement: given the running time
T on the original graph G, and the running time Ts on the simplified graph, the performance

ratio is defined as Ts

T
. If an InterDyck-reachability algorithm finishes on both the original and

the simplified graphs, we collect the performance ratio; the data is plotted in Figure 10(a). The plot
shows that for the majority of graphs, graph simplification reduces the running time of InterDyck-
reachability algorithms to less than 40% of the original running time. On all graphs, the running
time is reduced by more than 20%.

In practice, it is also necessary to take graph-simplification time into account. We define T ′ as
the time needed for both graph simplification and running the InterDyck-reachability algorithm
on the simplified graphs. Figure 11(a) presents the LCL-reachability result. From the plot, we see
that, as the running time of the LCL-reachability algorithm increases, the cost of graph simplifi-
cation becomes less and less significant. If the LCL-reachability algorithm completes on the orig-
inal graph within 7 seconds, it is not worth performing graph simplification. However, for larger
graphs, the time graph simplification is recouped. The observation is consistent for both SPDS-
and CFL-reachability algorithm w.r.t. Figures 11(b) and (c). Overall, running graph simplification
and performing an InterDyck-reachability algorithm on the simplified graph is 2.18× faster than
running the same algorithm on the original graph.

Precision. We define the precision ratio as
y

x
where x and y denote the number of InterDyck-

reachable pairs obtained from running the InterDyck-reachability algorithm on the original and
simplified graphs, respectively. Figure 10(b) gives information about the precision improvements.
Theoretically, performing graph simplification does not affect the InterDyck-reachability
results. In practice, when the set of non-contributing edges in the graph is smaller, the various
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Fig. 10. The effect of the graph simplification on InterDyck-reachability algorithms. Running on a simplified

graph helps improve the performance, precision, and memory usage of the algorithm. The x-axis represents

the number of edges in the original graphs, and the y-axis indicates the improvement ratio. Each plot shows

the improvement of one benchmark program. A lower y-axis value indicates a better degree of improvement

from graph simplification.

Fig. 11. Performance comparison. In these comparisons, we compare two approaches to solve the InterDyck-

reachability problem: directly running an InterDyck algorithm on the original graph (with time T ), versus

performing graph simplification and then running the same InterDyck algorithm on the simplified graph

(with time T ′). The value on the y-axis indicates the speedup due to graph simplification. y = 1 means that

the time needed to run InterDyck algorithm on the original graph is the same as first performing graph

simplification and then running the algorithm on the simplified graph.

over-approximation algorithms are likely to obtain more precise answers. It is interesting to note
that the observed precision improvement is quite significant: on average, graph simplification
helps InterDyck-reachability to generate a solution that has only 64.92% of the pairs that are
in the solution computed using the original graph. (The discarded pairs are false positives.) For
the LCL-reachability algorithm, there are three graphs where graph simplification helps to detect
more than 80% of pairs as false positives in the original solution. Moreover, there is a trend
that with an increasing number of edges in the graph, the precision improvement from graph
simplification is likely to be more significant.
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Fig. 12. Comparison of graph-simplification improvement among the algorithms. The x value for a data

point is the improvement for the first InterDyck algorithm, the y value is the improvement for the second

InterDyck algorithm. A data point in the bottom-right half-space indicates that the algorithm on the x-axis

has the greater improvement; a data point in the top-left half-space indicates the algorithm on the y-axis

has the greater improvement.

Memory Consumption. As mentioned in Section 6.2, the average number of edges in the simpli-
fied graph is 74.3% of the original graphs. However, Figure 10(c) shows that, in most cases, the
InterDyck-reachability algorithms consume around half the memory when running on the sim-
plified graph. On average, running InterDyck-reachability algorithms on the simplified graphs
consumes only 57.37% of the original memory.

6.4 RQ3: Graph-Simplification Improvements for Different InterDyck-Reachability

Algorithms

From a practical perspective, the LCL-reachability algorithm benefits the most from graph simplifi-
cation. Table 2 shows that, with the graph simplification technique, the LCL-reachability algorithm
can handle 13 more graphs within the same time budget, which is significantly more than the other
two InterDyck algorithms.

Figure 12 compares the precision improvements based on the graphs that all three algorithms
can process. Specifically, the top-left plot of Figure 12 shows that most of the data points occur in
the bottom-right half-space, which indicates that for the same graph, SPDS-reachability achieves
better precision improvements compared to LCL-reachability. The top-right plot shows that the
precision improvements for both LCL- and CFL-reachability are comparable. The bottom-left plot
shows that the precision improvement of SPDS-reachability is more significant compared to CFL-
reachability. To sum up, the graph simplification technique benefits the SPDS-reachability algo-
rithm the most in terms of precision improvement.

In terms of the performance benefits, we only compare the LCL-reachability algorithm against
the SPDS-reachability algorithm. The CFL-reachability algorithm can only terminate successfully
on very small graphs. In Figure 12, the bottom-right plot shows that the performance improvement
(in terms of running time) is similar for the two InterDyck algorithms.
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6.5 Discussion

Our graph-simplification algorithm is based on the bidirected Opt-Dyck algorithm on the relaxed
graph G ′. A natural extension is to utilize a general Dyck-reachability algorithm on G to identify
the InterDyck-contributing edges inG. However, the Dyck-relation on general digraphs is not an
equivalence relation. We have to resort to a more expensive (sub)cubic-time Dyck-reachability
algorithm to identify Dyck-contributing edges in G. In Table 2, we have seen that the SPDS-
reachability algorithm basedon Dyck-reachability does not scale well in practice.

For simplification results, besides node and edge numbers, the proposed graph-simplification
algorithm also decreases the number of different calls/returns and the number of different fields
significantly. In the simplified graph, the total numbers of different calls/returns and fields are
usually below one fifth of the number in the original graph. The number of different calls/returns
and fields establishes the size of the alphabets used in the Dyck languages Lb and Lp . The time
complexity of InterDyck algorithms also depends on the number of different kinds of parentheses
and brackets. Thus, the decrease in these numbers also contributes to the smaller time and space
consumption of the different InterDyck algorithms, and contributes to the performance gain from
graph simplification as well.

In the work of Späth et al. [21], it has been observed that over-approximation for InterDyck
reachability almost never happens in practice. Their conclusion is supported by the empirical study
of a typestate analysis for relatively small graphs. In our experiments, we observed significant
over-approximation of taint analysis. In general, the degree of over-approximation depends on
what kind of information the client analysis is computing.

We implemented the LCL- and CFL-reachability algorithms given in the original references.
The original SPDS article presents a demand-driven reachability algorithm, which also accepts the
prefix of the InterDyck languages, i.e., the algorithm accepts words with unmatched open paren-
theses/brackets, such as “�1�1�1”. Our SPDS implementation is restricted to only the InterDyck
language and always computes the all-pairs InterDyck-reachability results.

7 RELATED WORK

Many program-analysis problems can be formulated as an InterDyck-reachability problem [3, 20,
22–24, 26]. However, solving InterDyck-reachability is undecidable [17]. Existing approaches use
different techniques to over-approximate the exact solution for InterDyck-reachability problems.
Traditional approaches include over-approximating some Dyck languages in InterDyck using
regular languages [7, 8]. Access-path-based analysis approximates field-sensitivity by restricting
the access-paths with a bounded length, and thus also over-approximates InterDyck-reachability
[4, 12]. The recent work by Späth et al. [21] over-approximates InterDyck-reachability using syn-
chronized pushdown systems. Zhang and Su [28] propose linear-conjunctive-language reachabil-
ity to precisely formulate InterDyck-reachability, and provide an over-approximating algorithm
for solving the LCL-reachability problem.

The proposed graph-simplification algorithm is based on the Fast-Dyck algorithm proposed by
Zhang et al. [27]. Chatterjee et al. [1] give an O (m + n · α (n)) worst-time algorithm for solving
bidirected Dyck-reachability, which improves the O (m log m) expected running time by Zhang
et al. [27]. In practice, many techniques have been proposed to improve CFL-reachability-based
analyses [2, 25, 29]. Our work focuses on simplifying the input graphs for InterDyck-reachability
and is applicable to any existing sound InterDyck-reachability-based analysis. Graph simplifica-
tion techniques are also studied in other program-analysis applications. In pointer analysis, vari-
ous techniques [5, 6, 19] are applied to reduce the size of the constraint graphs for inclusion-based
analysis. For example, the work by Hardekopf and Lin [6] focus on deriving pointer-equivalence
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and location-equivalence relationships between variables. They simplify the graphs by collapsing
the equivalent nodes. Our graph simplification focuses on eliminating irrelevant edges.

8 CONCLUSION

This article has proposed a new graph-simplification algorithm for InterDyck-reachability. Our
key insight is to reduce the graph by eliminating graph edges that do not contribute to any Inter-
Dyck-paths. We have applied the simplification algorithm to context- and field-sensitive taint anal-
ysis for Android. The experimental results demonstrate that graph simplification can significantly
speed up existing InterDyck-reachability algorithms. Moreover, graph simplification improves
both the precision and the memoryusage of the client analysis.
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