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Abstract
Many program analysis problems can be formulated as graph
reachability problems. In the literature, context-free language (CFL)
reachability has been the most popular formulation and can be
computed in subcubic time. The context-sensitive data-dependence
analysis is a fundamental abstraction that can express a broad range
of program analysis problems. It essentially describes an interleaved
matched-parenthesis language reachability problem. The language
is not context-free, and the problem is well-known to be undecidable.
In practice, many program analyses adopt CFL-reachability to
exactly model the matched parentheses for either context-sensitivity
or structure-transmitted data-dependence, but not both. Thus, the
CFL-reachability formulation for context-sensitive data-dependence
analysis is inherently an approximation.

To support more precise and scalable analyses, this paper in-
troduces linear conjunctive language (LCL) reachability, a new,
expressive class of graph reachability. LCL not only contains the
interleaved matched-parenthesis language, but is also closed under
all set-theoretic operations. Given a graph with n nodes and m
edges, we propose an O(mn) time approximation algorithm for
solving all-pairs LCL-reachability, which is asymptotically better
than known CFL-reachability algorithms. Our formulation and algo-
rithm offer a new perspective on attacking the aforementioned unde-
cidable problem — the LCL-reachability formulation is exact, while
the LCL-reachability algorithm yields a sound approximation. We
have applied the LCL-reachability framework to two existing client
analyses. The experimental results show that the LCL-reachability
framework is both more precise and scalable than the traditional
CFL-reachability framework. This paper opens up the opportunity
to exploit LCL-reachability in program analysis.

Categories and Subject Descriptors F.1.1 [Models of Computa-
tion]: Automata; F.2.2 [Nonnumerical Algorithms and Problems]:
Computations on discrete structures; F.4.3 [Formal Languages]:
Classes defined by grammars or automata

Keywords Context-free language reachability, linear conjunctive
grammar, trellis automata, program analysis

1. Introduction
A variety of program analysis problems, such as interprocedural
data flow analysis [33], program slicing [32], shape analysis [29],
taint analysis [10], type-based flow analysis [26, 28], automatic
specification inference [3] and pointer analysis [35, 40, 42, 43]
can be formulated as formal language reachability (L-reachability)
problems [30]. A problem instance of L-reachability contains (1) an
edge-labeled graph G that abstracts the specific analysis problem
and (2) an L-reachability formulation that captures desired analysis
properties via computing reachability between nodes in G.

Context-free language (CFL) reachability [30] has been the
most popular formulation developed over the past decades. In
practice, the most widely instantiated CFL-reachability formulation
is Dyck-reachability [16, 41]. Particularly, many program analyses
use a Dyck language1 to exactly model the matched-parenthesis
property, which can be categorized as either context-sensitivity or
structure-transmitted data-dependence [31]. Specifically, context-
sensitivity describes the well-balanced procedure calls and returns
as open and close parentheses, respectively. Similarly, the structure-
transmitted data-dependence depicts yet another well-balanced
property among language constructors, such as field accesses (i.e.,
reads and writes [3, 35, 40]), list constructors (i.e., car and cdr [31]),
pointer indirections (i.e., references and dereferences [42, 43]) or
synchronizations (i.e., lock and unlock [15, 27]). In the ideal case, a
static analysis could dramatically improve its precision by leveraging
both well-balanced properties. However, it is well-known that the
precise analysis that simultaneously captures two or more well-
balanced properties is undecidable [31]. It remains a challenging
open problem to develop a general framework for context-sensitive
and structure-transmitted data-dependence analysis.

A traditional (yet still popular) approximate solution to the
undecidable problem is via a CFL-reachability-based approach.
However, the analysis matching both well-balanced properties
describes an interleaved matched-parenthesis language, which is not
even context-free. On the other hand, CFLs are not closed under
intersection [7, 9]. Therefore, a practical analysis must sacrifice
the precision of either context-sensitivity or data-dependence by
approximating it using a regular language [10, 35, 40]. Nevertheless,
the size of the approximating regular language can be exponential
in the size of the original CFL [17, 23, 37].

Moreover, CFL-reachability information is quite expensive to
compute. Traditional CFL-reachability algorithms exhibit a sub-
cubic time complexity [4, 30], and thus do not scale well in prac-
tice. Fast algorithms and implementations are known only for spe-
cial cases [39, 41, 42]. Recent work by Tang et al. [36] intro-

1 The Dyck language is an important subclass of CFL that essentially
generates the well-matched parentheses. Formally, a Dyck language Dk
of size k is generated by the following rules: S → S S | (0 S )0 | . . . |
(k S )k | ε.



Type L-reachability Complexity
Formulation Algorithm Time Space

CFL sound exact O(n3/log n) O(n2)
TAL sound exact O(n6) O(n2)
LCL exact sound O(mn) O(n2)

Table 1. Comparisons among L-reachability frameworks for
context-sensitive data-dependence analysis, where “sound” stands
for sound, over-approximation and “exact” a fully precise formula-
tion or algorithm.

duces a new tree-adjoining language (TAL) reachability formu-
lation for context-sensitive analysis without structure-transmitted
data-dependence. The TAL-reachability algorithm is more scalable
than CFL-reachability on the specific client analysis of constructing
method summaries. However, TAL does not contain the interleaved
matched-parenthesis language and the worst case time complexity
of the TAL-reachability algorithm in general is O(n6).

In this paper, we study a new class of formal language reachabil-
ity formulation called linear conjunctive language (LCL) reachabil-
ity. This class of languages lies strictly between linear context-free
and deterministic context-sensitive languages, and is incompara-
ble with CFLs [24]. The most appealing properties of LCLs are
that LCLs contain the interleaved matched-parenthesis language
for context-sensitive structure-transmitted data-dependence analy-
sis and are also closed under all set-theoretic operations [11, 13,
24]. The exact LCL-reachability problem is undecidable. We pro-
pose a sound approximation algorithm2 for solving all-pairs LCL-
reachability in O(mn) time for a graph with n nodes and m edges.

In general, our LCL-reachability formulation yields a new per-
spective on solving the context-sensitive structure-transmitted data-
dependence analysis problems. From a language-theoretic per-
spective, the formulation is exact compared with traditional CFL-
reachability formulations. As a result, practical analyses only need
to focus on the algorithmic aspects for developing a sound ap-
proximation for the reachability problem. From an algorithmic
perspective, our algorithm is asymptotically faster than the sub-
cubic CFL-reachability algorithm. Table 1 provides a summary
comparison among the traditional CFL-reachability and our new
LCL-reachability formulations.

We make the following main contributions in this paper:

• We present a new L-reachability formulation called linear
conjunctive language (LCL) reachability. We instantiate the
LCL-reachability formulation to context-sensitive structure-
transmitted data-dependence analysis. To the best of our knowl-
edge, this is the first exact L-reachability formulation of this
important non-context-free language reachability problem.
• We propose a general algorithm for solving the all-pairs LCL-

reachability problem. Moreover, we take the context-sensitive
structure-transmitted date-dependence analysis as an example,
and propose another refined LCL-reachability algorithm for
this specific analysis. Given an input graph with n nodes and
m edges, both our sound approximation algorithms solve the
reachability problems in O(mn) time, which is asymptotically
better than the CFL-reachability algorithms.
• We apply the proposed LCL-reachability algorithm on two prac-

tical context-sensitive data-dependence analyses, i.e., an alias
analysis for Java [40] and a taint analysis for Android apps [10].

2 The term approximation here reflects the general concept in program
analysis, which should not be confused with its usage in “approximation
algorithms”.

1: class A {
2: ...
3: F getF() {
4: return this.f;
5: }
6: }

7: A a; ...
8: a.f = x;
9: y = a.getF();

(a) A code snippet.
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(b) Its graph representation.

Figure 1. A taint analysis example.

Our results illustrate significant precision and scalability advan-
tages of the proposed LCL-reachability framework.

The rest of the paper is structured as follows. Section 2 motivates
context-sensitive data-dependence analysis, and Section 3 reviews
necessary background. Next, we present the LCL-reachability for-
mulation (Section 4) and our LCL-reachability algorithm (Section 5).
Then, Section 6 describes our evaluation setup and results, and Sec-
tion 7 presents further discussions. Finally, Section 8 surveys related
work, and Section 9 concludes.

2. Motivating Example
We give a concrete example to motivate context-sensitive structure-
transmitted data-dependence analysis. Note that the context-
sensitive data-dependence analysis considered by Tang et al. in
their work on TAL-reachability [36] is without structure trans-
mission. Unless otherwise stated, the data-dependence analysis
discussed in latter sections is always structure-transmitted.

We consider a simple taint analysis for a Java-like language in
Figure 1. In the code snippet shown in Figure 1(a), we would like
to check whether a potential tainted value x flows to the variable y.
Figure 1(b) gives a graphical view of the taint analysis. Each node
represents a variable, and each edge an assignment. Specifically,
on line 8, value x is put into field f, therefore, the directed edge is
labeled with an open bracket [f . Similarly, the return value ret gets
the field value f from this, so the corresponding edge is labeled
with a close bracket ]f . Moreover, the parentheses (9 and )9 depict
the call and return of the procedure invocation occurred on line 9,
respectively. In the L-reachability frameworks, variable y is tainted
only if node y is reachable from node x in Figure 1(b) and the
corresponding path string belongs to language L.

It is straightforward that both the calls/returns (i.e., context-
sensitivity) and putfield/getfield (i.e., field-sensitivity) need to satisfy
the balanced properties. Let the Dyck languageDm describe context
sensitivity and Dn field sensitivity. It is clear that the path string
“[f (9]f )9” between nodes x and y belongs to the intersection of two
Dyck languages Dm ∩ Dn, which is not context-free.3 The class
of LCL contains Dm ∩Dn since it contains Dyck languages and is
closed under intersection [24, 25]. Therefore, an LCL-reachability-
based analysis is able to report a potential tainted variable y. No
other tainted variables will be reported for this example since all
other path strings are not in Dm ∩Dn. Using a regular language
R to approximate one Dyck language D, a CFL-reachability-based
analysis may also report this tainted variable based on the CFL
Dm∩Rn orRm∩Dn. However, the approximating regular language
R may introduce additional spurious tainted sites, and thus decrease
the analysis precision. Moreover, the regular approximation causes
an exponential blowup in grammar size [17, 23, 37].

3 To perform the language intersection, the alphabets for both Dyck lan-
guages are extended to Σ = ΣDm ∪ ΣDn .



3. Background and Definitions
Linear conjunctive languages can be described in terms of both
the grammatical model (i.e., Linear conjunctive grammars) and
the operational model (i.e., trellis automata). The two models
are equivalent [25]. Unlike context-free grammars, most linear
conjunctive grammars are specified using a direct automaton-to-
grammar construction, which are quite complex and not intuitively
meaningful [25]. For instance, the grammar size for Dyck language
Dk could be O(k4) and the resulting grammar is not human-
readable. Therefore, our LCL-reachability algorithm is based on
trellis automata.

This section gives the background on our formulation for context-
sensitive data-dependence analysis. Section 3.1 introduces the trellis
automata. Section 3.2 formally defines the problem. We assume
the reader is familiar with fundamental concepts in languages and
automata and refer the reader to classical treatments [7, 9] of the
subjects.

3.1 Trellis Automata
Trellis automata (TA) can be defined through the trellis representing
their computation [5, 6]. A trellis automaton processes an input
string of length n > 1 using a uniform triangular array with
n(n+1)

2
processor nodes. Every processor node computes a value in

a fixed finite set Ql according to node labels l. In particular, each
processor node in the bottom row reads a corresponding symbol
directly from the input tape, and computes a value using a function
Il : Σ → Ql. The rest of the nodes compute the value using the
function δl : Ql1 ×Ql2 → Ql from the output of both their left and
right predecessors. The distance between any nodes and the topmost
node is denoted as Level(k). The string is accepted if and only if the
value computed by the topmost node belongs to the set of accepting
states F ⊆ Ql. Formally, we have:

DEFINITION 1. A trellis automaton is defined as a 6-tuple K =
(Σ, L,Ql, Il, δl, F ), where

• Σ is the input alphabet,
• L is a set of node labels,
• Ql is a finite non-empty set of states for l-labeled nodes,
• Il : Σ→ Ql is a function that generates the initial states,
• δl : Ql1 ×Ql2 → Ql is the set of transition functions, and
• F ⊆ Ql is the set of accepting states.

The result of the computation on a string w ∈ Σ+ is denoted
by ∆ : Σ+ → Ql, which is defined inductively as ∆(a) = Il(a)
and ∆(awb) = δl(∆(aw),∆(wb)), for any a, b ∈ Σ and w ∈ Σ∗.
Finally, the language recognized by the automaton is L(K) =
{w |∆(w) ∈ F}.

DEFINITION 2. A trellis automaton K is said to be semihomoge-
neous (STA) if the label of any node on Level(k) can be uniquely
determined by the label of any ancestor on Level(k − 1). K is a
homogeneous trellis automaton (HTA) if all nodes are labeled by
the same symbol.

Figure 2(a) shows an STA processing a string “a1a2a3a4” of
length 4. Specifically, the leftmost gray nodes on each level are
labeled by g and the remaining white nodes are labeled by w. It
is straightforward to verify that the color of any node is uniquely
determined by one of its ancestor(s). We define such an STA to be a
gray-white trellis automaton (GWTA). The GWTA recognizes the
inter-Dyck language and thus plays a pivotal role for our context-
sensitive data-dependence algorithm. Moreover, the STA becomes
an HTA if all nodes are white nodes. Let the languages recognized
by STA and HTA be L(STA) and L(HTA), respectively. The two
automata have the same expressive power:

a1 a2 a3 a4

(a) An STA.

VPLDyck

LCL

CFL TAL

Inter-Dyck

(b) Relationship among languages.

Figure 2. Semihomogeneous trellis automata and LCL. In the right
figure, the arrows denote inclusions.

THEOREM 1 (Culik II et al. [5, Thm. 2]). L(STA) = L(HTA).

The class of L(HTA) is also known as linear conjunctive lan-
guages (LCLs) [25]. We briefly compare LCLs to several important
formal languages used in program analysis. Context-free language
(CFL) is the most fundamental language class which has enabled
many practical analyses [30]. Tree-adjoining language (TAL) [14]
is a proper superset of CFL with increased expressiveness. The-
oretically, TAL is more expensive to parse and formulate as a
graph reachability problem. In practice, recent work by Tang et
al. [36] demonstrates the effectiveness of applying TAL-reachability
to compute method summaries. However, neither CFL nor TAL con-
tains the interleaved matched-parenthesis languages (Inter-Dyck) for
context-sensitive data-dependence analysis. On the other hand, LCL
is strictly a superset of linear CFL, but is incomparable with CFL.
Specifically, LCL contains some CFLs, such as Dyck, and some
non-CFLs, such as Inter-Dyck. Moreover, the visibly pushdown
language (VPL) class is introduced by Alur and Madhusudan for
verifying “context-free”-style program properties [2]. LCL contains
VPL. Figure 2(b) summarizes the relationship among these language
classes.

3.2 Problem Statement
We give the formal definitions of the problems considered in this
paper. Let K = (Σ, L,Ql, Il, δl, F ) be a trellis automaton. Given
a directed graph G = (V,E) with each edge (u, v) ∈ E labeled
by a terminal L(u, v) ∈ Σ, a path p = v0, v1, . . . , vm realizes a
string R(p) by concatenating the edge labels along the path, i.e.,
R(p) = L(v0, v1)L(v1, v2) . . .L(vm−1vm). The realized string
R(p) is also defined as a path string. Consider a path p = u, . . . , v,
if the path string R(p) can be derived from a trellis automaton state
q ∈ Ql, we summarize the path p as a summary edge (u, q, v). We
also call state q a summary.

DEFINITION 3 (LCL-reachability). Given an edge labeled digraph
G = (V,E) and a semihomogeneous trellis automaton K =
(Σ, L,Ql, Il, δl, F ), compute the summary edges (u, q, v) for all
u, v ∈ V , where q ∈ F .

Context-sensitive data-dependence analysis can be formulated
as an LCL-reachability problem by restricting the STA to an GWTA
which recognizes the intersection of two Dyck languages Dm and
Dn. Let Dmn and KDmn denote the language Dm ∩ Dn and its
equivalent GWTA, respectively. We have,

DEFINITION 4. Context-sensitive data-dependence analysis is an
instance of LCL-reachability by restricting the trellis automation K
to KDmn .

THEOREM 2 (Reps [31]). Context-sensitive data-dependence anal-
ysis is undecidable.

COROLLARY 1. The LCL-reachability problem is undecidable.



Let φ and φLCL denote the sets of summary edges in an exact
solution and a result obtained by an LCL-reachability algorithm,
respectively. The soundness of an LCL-reachability algorithm is
defined similarly as the soundness of a static analysis, i.e., for each
summary e ∈ φLCL, it is undecidable to determine whether e is in
φ and e /∈ φLCL implies e /∈ φ. Formally, we have the following
definition:

DEFINITION 5 (Sound Approximation). An LCL-reachability al-
gorithm is a sound approximation if and only if it computes a
solution φLCL such that φ ⊆ φLCL.

4. Formulation for Context-Sensitive
Data-Dependence Analysis

This section describes the idea of constructing a GWTA KDmn for
context-sensitive data-dependence analysis.

4.1 Recognizing Dmn

Constructing a TA as a language recognizer is challenging since TA
is essentially a systolic system for which one has to deal with a large
number of synchronized processes (i.e., TA nodes) [12]. Many TA
constructions involve nontrivial programming techniques [6] and
the correctness proofs are difficult to obtain as well [11–13].

To make the TA construction more accessible, a restricted type
of Turing machines named deterministic simple Turing machine
(DSTM) was introduced by Ibarra et al. [11, 13]. The DSTM model
not only provides a sequential machine characterization of TA but
also enables more principled proofs of correctness. The DSTM
shown in Figure 3(a) is equipped with a read-write work tape and
a read-only input tape. The work tape, with a start marker $, is
infinite to the right, containing all blanks marked by λ initially . The
definition of DSTM is formally given as follows:

DEFINITION 6 ([11, 13]). A deterministic simple Turing machine
(DSTM) is a 6-tuple M = (Q,Σ,Γ, δ, q0, F ), where

• Q is a finite set of states,
• Σ is the input alphabet,
• Γ is the work tape alphabet, containing two special symbols $

(start marker) and λ (blank marker),
• q0 ∈ Q is the start state,
• F ⊆ Q is a finite set of accepting states, and
• δ : Q × Γ × (Σ ∪ {ε}) → Q × (Γ \ {λ}) × {−1,+1} is a

set of state transitions, where −1 and +1 denote left and right
moves on work tape, respectively. And thus, M does not write λ
(blank symbol) on work tape.

The restriction on δ is as follows. For all q, q′ ∈ Q, Z,Z′ ∈ Γ, a ∈
Σ ∪ {ε} and d ∈ {−1,+1}, if δ(q, Z, a) = (q′, Z′, d), then:

(1) Z′ = $ iff Z = $;
(2) If q = q0 and Z 6= λ, then a = ε, q′ = q0, Z

′ = Z and
d = +1: left-to-right sweep without altering the state and work
tape;

(3) If q = q0 and Z = λ, then a 6= ε, q′ 6= q0 and d = −1: end of
a left-to-right sweep with reading an input;

(4) If q 6= q0 and Z 6= $, then a = ε, q′ 6= q0 and d = −1:
right-to-left sweep with rewriting the work tape;

(5) If q 6= q0 and Z = $, then a = ε, q′ = q0 and d = +1: end of
a right-to-left sweep.

The restriction imposed by (1)−(5) on DSTM is that the read-
write head can only make alternate sweeps (left-to-right and right-
to-left between $ and the leftmost λ) on the work tape. Moreover,
on any left-to-right sweep, DSTM is required to remain in state

$. . . λ λ . . .

q0 2-way read-write head

Work tape

◦ Input head

(a) A DSTM.
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(b) Right-to-left sweep for Dmn.

Figure 3. Illustrations on a DSTM.

q0 without altering the contents of the work tape until it reaches
the leftmost λ symbol. DSTM then reads an input from the input
tape, enters a state other than q0, rewrites a symbol from Γ \ {λ},
and proceeds to the left. On the right-to-left sweep, DSTM can
arbitrarily rewrite symbols from Γ \ {λ} on the work tape. Once
DSTM reaches the start marker, it proceeds to the next left-to-right
sweep. DSTM accepts a string if the input is exhausted and the
machine enters an accepting state q ∈ F with read-write head on
the start marker $.

EXAMPLE 1 (Dyck recognition [11, Example 4.1]). Let Dm be
the Dyck language of size m. It is straightforward to see that
any non-empty string x ∈ Dm reduces to ε by repeatedly ap-
plying the cancellation rule (i)i = ε. Given an input string
x ∈ Σ+, the basic idea of constructing a DSTM M is by ap-
plying the cancellation rules. Formally, M = (Q,Σ,Γ, δ, q0, F ),
where Q = {q0, q1, q2}∪{(1, . . . , (m}, Σ = {(1, )1, . . . , (m, )m},
Γ = {$, λ,#} ∪ {(1, . . . , (m}, F = {q2}, and δ is defined as
follows, where 1 ≤ i ≤ m, Z ∈ {Γ \ {λ}}:

(R1) δ(q0, Z, ε) = (q0, Z,+1),
(R2) δ(q0, λ, (i) = (q1, (i,−1),
(R3) δ(q0, λ, )i) = ((i,#,−1),
(R4) δ(q1, Z, ε) = (q1, Z,−1),
(R5) δ((i,#, ε) = ((i,#,−1),
(R6) δ((i, (i, ε) = (q2,#,−1),
(R7) δ(q2,#, ε) = (q2,#,−1),
(R8) δ(q2, (i, ε) = (q1, (i,−1),
(R9) δ(q1, $, ε) = (q0, $,+1),

(R10) δ(q2, $, ε) = (q0, $,+1).

In general, R1 indicates a left-to-right sweep. R2-R3 read an
input and start the right-to-left sweep. R4-R8 represent the right-
to-left sweep, and R9-R10 the end of a right-to-left sweep. We also
give a detailed description of each rule. In the initial configuration,
the machine M is in q0 and the read-write head points to the start
marker $. The head then moves to the leftmost blank marker λ
without altering either the state or work tape (R1). When reading
an open parenthesis (i from the input head, M writes it down on
the work tape immediately and enters a state q1 indicating there
is additional open parentheses on the work tape (R2). Then the
right-to-left sweep begins. During the sweep, M remains in q1
without altering any other work tape symbols (R4). If it hits the
start marker $, M begins a new left-to-right sweep (R9). When
reading a close parenthesis )i from the input head, M writes a
symbol # down on the work tape and enters a state (i (R3). During
the right-to-left sweep, it applies the cancellation rule by rewriting
the matched parenthesis (i with # on the work tape, and enters q2
indicating the matching (R6). The state q2 transits to q1 if M sees
any open parentheses on the work tape (R8). When encountering



any # symbol on the work tape, the DSTM state remains unchanged
(R5 and R7). Finally,M starts a left-to-right sweep to read the input
w.r.t. R9 and R10.

The language Dmn is the intersection of two Dyck languages
Dm and Dn. For brevity, let Dm generate the matched pairs
of {(1, )1, . . . , (m, )m} and Dn the pairs of {[1, ]1, . . . , [n, ]n}.
We extend the DSTM in Example 1 to handle the intersec-
tion of Dn. We assume the availability of the DSTM Mm =
(Qm,Σm,Γm, δm, q0m , Fm) for Dm in Example 1.

The resulting DSTM M for Dmn. We construct a DSTM M =
(Q,Σ,Γ, δ, q0, F ), such that Σ = Σm ∪ {[1, ]1, . . . , [n, ]n}, Γ =
Γm ∪ {[1, . . . , [n}, q0 = q0m and F = Fm. The set of states Q is
depicted as the set of nodes in Figure 3(b).

Next, we discuss the extension to state transitions δ. The tran-
sitions of the right-to-left sweep need nontrivial extensions. Fig-
ure 3(b) gives a more comprehensive representation of these tran-
sitions. Each node denotes a state and each directed edge (q1

Z1−−→
q2) a transition corresponding to a DSTM move δ(q1, Z1, ε) =
(q2, Z2,−1), where Z2 ∈ {Γ \ {λ}}. Specifically, nodes q1, q2, (i
and [i correspond to the states of handling the Dyck languages in
Example 1, and nodes q1(i and q1[i correspond to handle the inter-
section. Let us consider processing an open parenthesis (i of Dm.
As discussed above, the DSTM enters state q1. During the sweep,
it may encounter three kinds of work tape symbols (, [ and #, re-
spectively. Due to R4 in Example 1, the state q1 remains unchanged.
For processing a close parenthesis )i, the DSTM first enters state
(i. During the sweep, it handles work tape symbols (i and # as R5
and R6 in Example 1. When encountering the brackets [ in Dn, it
transits to a new state q1(i. The role of q1(i is twofold. First, it acts
just the same as state (i respecting the fact that the DSTM is on a
move to match a (i symbol. Second, it is also similar to state q1 such
that it has already encountered additional brackets, and thus shall
never transit to the matched state q2. Furthermore, when state q2 en-
counters additional parentheses or brackets or state q1(i encounters
a matched (i, the DSTM enters q1. The processing of brackets [i and
]i of Dn is similar to Dm. In particular, we introduce the addition
state q1[i to handle the language intersection with Dm. At the end
of a right-to-left sweep, the DSTM starts a left-to-right sweep to
read a new input symbol, which is the same as rules R1, R9 and R10
in Example 1.

LEMMA 1. The DSTM M correctly recognizes Dmn.

Proof. Dmn is essentially the intersection of two Dyck languages
Dm and Dn. Let Q denote “the DSTM M recognizes the input
string s and reaches the accepting state q2”. We construct the proof
by showing Q =⇒ s ∈ Dmn and s ∈ Dmn =⇒ Q.

• s ∈ Dmn =⇒ Q.
We first consider the pairs of (i and )i in Dm. M writes every
(i on the work tape. When reading a )i, it writes # and begins
a right-to-left sweep. During the sweep, since Dm is a Dyck
language, every )i should match a (i. Before the matching, )i
cannot encounter any (j , where i 6= j. Reading symbol # from
the work tape does not change states in M , therefore, we can
safely ignore them while discussing state transitions. Consider
an actual right-to-left sweep. The )i only encounters (i or [ (if
any) on the work tape. There are two cases. Case 1: )i encounters
(i first. According to Figure 3(b), the state is q2 with rewriting
# on the work tape. If there are outstanding [s, DSTM transits
to q1 and starts a left-to-right sweep to read additional ]s. Case
2: )i encounters [ first. The state transits to q1(i. It then matches
the (i, rewrites # and begins a new sweep to read ]s.
Therefore, every (i will be rewritten as #. Due to the symmetry
in Dmn, every [ will be rewritten as # as well. Finally, for the

last symbol, i.e., either ) or ], in the input string, the work tape
contains only # and the corresponding ( or [ to match. The final
state is q2 according to Figure 3(b).

• Q =⇒ s ∈ Dmn.
We use proof by contradiction. Due to the property discussed in
Example 1, a string in Dmn finally reduces to ε by repeatedly
applying the cancellation rule. Moreover, due to the DSTM
construction, each time it applies the cancellation rule, it leaves
a pair of #s on the work tape.
Let us now suppose the DSTM is in q2 but the input string
s /∈ Dmn. There are four possibilities: s reduces to a string
contains at least one (i, )i, [i or ]i. We only need to consider
the parenthesis case since the bracket case is symmetric. We
first consider the )i case. The initial state is (i. Since the symbol
)i is outstanding, during the right-to-left sweep, the DSTM M
can never encounter a (i symbol on the work tape. Therefore,
when reaching the start marker, the state can only be q1(i and q1
according to Figure 3(b). As a result, DSTM will not start a new
left-to-right sweep. Then we consider the (i case. Again, since
it is outstanding, during the right-to-left sweep, the DSTM can
never apply rule (10) and (12) to rewrite the symbol. As a result,
after encountering this outstanding (i on the work tape, the only
possible states to reach are q1[i and q1 according to Figure 3(b).
Consequently, neither of the four cases can reach state q2, which
is a contradiction with our hypothesis. �

4.2 Constructing KDmn

We proceed to discuss the conversion from a DSTM to KDmn . The
intuition of the construction is based on the isomorphism between
DSTMs and HTA [11]. It is worth noting that the construction from
a DSTM to an HTA in the work of Ibarra and Kim [11] is flawed
since the construction does not guarantee a valid start of left-to-right
(i.e., end of right-to-left) sweep. We discuss the issue in their work
and provide a correction in Appendix A.4 The GWTA employs the
gray nodes to determine such sweeps.

Given a DSTM M = (Q,Σ,Γ, δ, q0, F ), we construct an
equivalent GWTA K = (Σ, L,Ql, Il, δl, F

′), where l ∈ {g, w}.
For white nodes, each state in Qw ∈ K is a pair of a state and
a tape symbol in M , i.e., Qw = {q̃�Z | q ∈ Q,Z ∈ Γ}. Let
Qeor be the set of states corresponding to the end of any right-
to-left sweep in M , i.e., Qeor = {q | δ(q, $, ε) = (q0, $,+1)}.
For gray nodes, their state set Qg ∈ K is a subset of Qw, i.e.,
Qg = {q̃�Z | q ∈ Qeor , Z ∈ Γ}. The accepting state F ′ ⊆ Qg
is constructed as F ′ = {q̃�Z | q ∈ F,Z ∈ Γ}. We define the first
element in pair q̃�Z as a q-position, and the second as a Z-position.

Among all transitions in M , the transitions corresponding to a
right-to-left sweep are used for constructing an equivalent K [11].
The transitions Il, δl ∈ K are in the following forms, where a ∈ Σ,
q, q1, q2 ∈ Q and Z,Z1, Z2 ∈ Γ of the DSTM M :

Il(a) = q̃�Z if δ(q0, λ, a) = (q, Z,−1),

δl(q̃1�Z1, q̃2�Z2) = q̃�Z if δ(q2, Z1, ε) = (q, Z,−1).

Following the GWTA representation, we have δw : Qw ×Qw →
Qw and δg : Qg × Qw → Qg . We define these transitions as
the LCL rules. The LCL rules consist of the Il-rules in the form
q̃�Z

I
:= a and δl-rules in the form q̃�Z

δ
:= q̃1�Z1 q̃2�Z2, respectively,

according to the initial states Il and state transitions δl in K.

All δl-rules are in the form q̃�Z
δ

:= δl(q̃1�Z1, q̃2�Z2), which
contain three q- and Z-positions, respectively. In contrast, each of
these rules is generated by a single DSTM transition δ(q2, Z1, ε) =

4 Based on our correction, it is theoretically possible to construct an HTA
for the graph reachability algorithm. However, the resulting HTA may have
many unnecessary states.



LCL rules Corresponding DSTM transitions

(1) q̃1�(i

I
:= (i δ(q0, λ, (i) = (q1, (i,−1)

(2) (̃i�#
I

:= )i δ(q0, λ, )i) = ((i,#,−1)

(3) q̃1�[i

I
:= [i δ(q0, λ, [i) = (q1, [i,−1)

(4) [̃i�#
I

:= ]i δ(q0, λ, ]i) = ([i,#,−1)

(5) ˜q1�Zpb

δ
:= �̃Zpb q̃1� δ(q1, Zpb, ε) = (q1, Zpb,−1)

(6) q̃2�#
δ

:= �̃# q̃2� δ(q2,#, ε) = (q2,#,−1)

(7) q̃1�Zo

δ
:= �̃Zo q̃2� δ(q2, Zo, ε) = (q1, Zo,−1)

(8) (̃i�#
δ

:= �̃# ˜(i� δ((i,#, ε) = ((i,#,−1)

(9) q̃1(i�[
δ

:= �̃[ ˜(i� δ((i, [, ε) = (q1(i, [,−1)

(10) q̃2�#
δ

:= �̃(i
˜(i� δ((i, (i, ε) = (q2,#,−1)

(11) ˜q1(i�Zb

δ
:= �̃Zb q̃1(i� δ(q1(i, Zb, ε) = (q1(i, Zb,−1)

(12) q̃1�#
δ

:= �̃(i q̃1(i� δ(q1(i, (i, ε) = (q1,#,−1)

(13) [̃i�#
δ

:= �̃# ˜[i� δ([i,#, ε) = ([i,#,−1)

(14) q̃1[i�(
δ

:= �̃( ˜[i� δ([i, (, ε) = (q1[i, (,−1)

(15) q̃2�#
δ

:= �̃[i
˜[i� δ([i, [i, ε) = (q2,#,−1)

(16) ˜q1[i�Zp

δ
:= �̃Zp q̃1[i� δ(q1[i, Zp, ε) = (q1[i, Zp,−1)

(17) q̃1�#
δ

:= �̃[i q̃1[i� δ(q1[i, [i, ε) = (q1,#,−1)

Table 2. LCL rules for context-sensitive data-dependence analysis,
where ( denotes the set of open parentheses and [ the set of
open brackets. For brevity, we let Zo = {(, [}, Zp = {#, (},
Zb = {#, [} and Zpb = Zp ∪ Zb. Moreover, the accepting state of
the equivalent trellis automaton is q̃2�#.

q̃1�(1 q̃1�[2 (̃1�# [̃2�#

q̃1�(1
˜q1(1�[2 [̃2�#

q̃1�# q̃2�#

q̃2�#

A path:
u x w y v

3

2

1

0

Level Trellis automaton

(1 [2 )1 ]2

Figure 4. Computing LCL-reachability for Dmn.

(q, Z,−1), which contains only two q and Z symbols, respectively.
Therefore, in each δl-rule, one q-position and one Z-position are
unnecessary. They can be safely replaced by a symbol indicating

“don’t care”. As a result, the δl-rules can be rewritten as q̃�Z
δ

:=
δl( �̃Z1, q̃2� ).

The resulting GWTAKDmn . LetM = (Q,Σ,Γ, δ, q0, F ) be the
DSTM for Dmn in Section 4.1. In the equivalent GWTA KDmn =
(Σ, L,Ql, Il, δl, F

′), we have L = {g, w} and Qeor = {q1, q2}.
Qw, Qg and F ′ can be constructed based on Qeor as described
above. The transitions Ig : Σ→ Qg and δg : Qg ×Qw → Qg can
be built by restricting Qw to Qg ⊆ Qw in Iw and δw, respectively.
We give the LCL rules for Iw and δw in Table 2. The right column
in Table 2 shows the DSTM transitions for recognizing Dmn. We
generate the equivalent LCL rules in the left column according
to the transformations discussed above. Specifically, rules (1)-(4)
are Il-rules and the remaining rules δl-rules. The correctness on the
construction is stated as follows. We defer the proof to Appendix A.3
due to the space constraints.

THEOREM 3. Given a DSTM, we can effectively construct an equiv-
alent GWTA.

EXAMPLE 2 (Recognizing a Dmn string). Consider a path be-
tween nodes u and v in Figure 4. We discuss the steps for rec-
ognizing the path string using LCL rules in Table 2. The correspond-
ing path string is “(1[2)1]2”. The recognition trellis automaton
is given above. We give the rule number in Table 2 to derive the
corresponding summary edges. The edge labels from left to right
are processed by the Il-rules (1), (3), (2) and (4), respectively. In
this example, for each gray node summary, we have its q position
q ∈ Qeor = {q1, q2}. The summaries generated on Level(2) are
derived using δl-rules (5), (9), (13), respectively. The two summaries
on Level(1) are generated using δl-rules (12) and (15), respectively.
Finally, the topmost summary is generated using δl-rule (6). Since
the topmost summary represents an accepting state, the path string
is in Dmn.

5. Algorithm for Context-Sensitive
Data-Dependence Analysis

This section discusses the LCL-reachability algorithm for context-
sensitive data-dependence analysis. We first sketch a baseline LCL-
reachability algorithm that is based on HTAs. The algorithm is gen-
eral, and works for arbitrary LCLs. Then we restrict the automaton
to a GWTA and present our main context-sensitive data-dependence
analysis algorithm.

We give the baseline LCL-reachability algorithm to explain
the key procedures in our main algorithm. The baseline algorithm
is also a fundamental start-point to establish the complexity and
correctness results of the main algorithm. Section 5.1 gives the
baseline algorithm. Section 5.2 describes the extension for handling
a GWTA. Section 5.3 provides the main algorithm, and Section 5.4
conducts the analysis.

5.1 Baseline LCL-Reachability Algorithm
The baseline LCL-reachability algorithm is based on HTAs, which is
suitable for arbitrary LCLs. Due to Theorem 1, it also works for the
context-sensitive data-dependence analysis problem. For simplicity,
in this section, we assume an HTA that handles only white nodes in
the GWTA described in Section 4.2.

The baseline algorithm is a dynamic-programming style algo-
rithm. The algorithm maintains a worklist of summary edges in the
form (u, q̃�Z, v), where u and v represent a pair of nodes in the
graph and q̃�Z a state in the trellis automaton. For each of the work-
list items, the processing involves two major steps: (1) Traversing
nodes — The algorithm needs to determine the proper nodes to prop-
agate the reachability information, and (2) Generating summaries —
The algorithm also needs to generate the correct reachability infor-
mation as the new summary edges w.r.t. the LCL rules. Those new
summaries are then inserted into the worklist. Finally, the algorithm
terminates until there are no new summary edges to be added. Next,
we discuss the two steps in detail.

5.1.1 Traversing Nodes
Let us consider a path p = u, x, w, y, v shown in Figure 4. The path
string “(1[2)1]2” can be parsed by the GWTA above. In this section,
we only consider the white nodes. The trellis representation can also
be considered as a parsing tree. Each parsing tree node corresponds
to a summary edge of two nodes in the given path. For example, the
rightmost summary edges on Level(1) and Level(2) are (x, q̃2�#, v)
and (w, [̃2�#, v), respectively. The summary edge on Level(k) is
generated by two summary edges on Level(k + 1), for any non-
bottom levels. For example, the rightmost summary (x, q̃2�#, v)
on Level(1) is generated by two summaries (x, ˜q1(1�[2, y) and



(w, [̃2�#, v) on Level(2). Moreover, each summary edge on Level(k)
contains exactly one more terminal than its two predecessors on
Level(k+1). For instance, the rightmost summary edge (x, q̃2�#, v)
has one more “]2” and “[2” than the predecessors (x, ˜q1(1�[2, y)
and (w, [̃2�#, v), respectively. Since the terminals correspond to
the labels of the original graph edges, therefore, for generating
new summary edges, only those original graph edges need to be
traversed.

5.1.2 Generating Summaries
In the beginning, all edge labels L are converted to a summary edge

according to Il-rules q̃�Z
I

:= L. In a δl-rule q̃�Z
δ

:= δl( �̃Z1, q̃2� ),
we say a summary is a left term (L-term) if its q-position is filled
with a symbol. Similarly, a summary is a right term (R-term) if its
Z-position is . Consider the rightmost summary edge (w, [̃2�#, v)
on Level(2) in Figure 4, we say this summary is generated by an
L-term (w, �̃#, y) and a R-term (y, ˜[2� , v). It is immediate that
only the Z-position of an L-term and q-position of a R-term are
useful for generating new summary edges. In our main algorithm,
we use L(u, v) to represent a set of Z-position symbols in an L-term
between nodes u and v, and R(u, v) to represent a set of q-position
symbols in a R-term. A new summary edge (u, q̃�Z, v) is generated
if and only if Z1 ∈ L(u, v), q2 ∈ R(u, v), and there exists a valid

δl-rule q̃�Z
δ

:= δl( �̃Z1, q̃2� ).

LEMMA 2. Given a directed graph G = (V,E), every summary
edge (u, q̃�Z, v) is generated by (u, �̃Z1, y) and (x, q̃2� , v), where

nodes u, v, x, y ∈ V , edges (y, v), (u, x) ∈ E and q̃�Z
δ

:=
δl( �̃Z1, q̃2� ).

EXAMPLE 3 (Generating summaries). Consider the path in Fig-
ure 4, where the path string is discussed in Example 2. We discuss
generating the summary edge (w, [̃2�#, v) w.r.t. the LCL rules on
white nodes discussed in Section 4.2. In the beginning, for all nodes
i and j in the path, the edge labels L(i, j) are converted to summary
edges (i, q̃�Z, j), where q̃�Z ∈ Iw. Therefore, we have (w, (̃1�#, y)
and (y, [̃2�#, v). When processing (w, (̃1�#, y), we search all out-
going neighbors of y in the original graph. In our example, it is
node v. As a result, we store the L-term �̃# in L(w, v). The al-
gorithm then searches for all R-terms q̃� ∈ R(w, v) to generate
a new summary edge. At this point, R(w, v) = ∅, so nothing is
generated. Similarly, when processing (y, [̃2�#, v), we store the
R-term ˜[2� to R(w, v), and search for each L-term in L(w, v).
Consequently, we use �̃# ∈ L(w, v) and ˜[2� ∈ R(w, v) to match
an LCL rule. According to Example 2, we have a matched LCL
rule δw( �̃#, ˜[2� ) = [̃2�#. Finally, we generate the new summary
(w, [̃2�#, v).

5.1.3 Baseline Algorithm
The baseline LCL-reachability algorithm is given in Algorithm 1.
The inputs of the algorithm are an edge-labeled directed graphG and
some LCL rules corresponding to an HTA. It computes a set S(i, j)
of summary edges (i, q̃�Z, j), where q̃�Z belongs to the accepting
states of the corresponding trellis automaton.

The algorithm shares the same style of the popular worklist-
based CFL-reachability algorithms [4, 30]. The sets of outgoing
and incoming neighbors of node i are denoted as OUT(i) and IN(i).
On line 1, it initializes the worklist with the items of Il-rules for
original graph edges (i,L, j) ∈ G, i.e., I(L) is an initial state of the
trellis automaton. The main algorithm proceeds as follows. For each
item popped from the worklist on line 3, it obtains the L-term �̃Z

and R-term q̃� from the summary edge on line 4. For brevity, we
use Z and q to represent them while discussing the algorithms. For
each summary edge (i, j), the algorithm generates new summary
edges via searching the outgoing (lines 5-12) and incoming (lines 13-

Algorithm 1: The baseline LCL-reachability algorithm.
Input :Edge-labeled directed graph G = (V,E), a set of LCL rules;
Output : the set {S(i, j) | i, j ∈ V }

1 Initialize W with summary edges of Il-rules
2 while W 6= ∅ do
3 (i, q̃ � Z, j)← SELECT-FROM(W )

4 Obtain q and Z from q̃ � Z
5 foreach k ∈ OUT(j) do
6 if Z /∈ L(i, k) then
7 L(i, k)← L(i, k) ∪ {Z}
8 foreach x ∈ R(i, k) do
9 q̃′�Z′ ← FIND-RULE(Z, x)

10 if q̃′�Z′ 6= ∅ and q̃′�Z′ /∈ S(i, k) then
11 S(i, k)← S(i, k) ∪ {q̃′�Z′}
12 W ← (i, q̃′�Z′, k)

13 foreach k ∈ IN(i) do
14 if q /∈ R(k, j) then
15 R(k, j)← R(k, j) ∪ {q}
16 foreach X ∈ L(k, j) do
17 q̃′�Z′ ← FIND-RULE(X, q)

18 if q̃′�Z′ 6= ∅ and q̃′�Z′ /∈ S(k, j) then
19 S(k, j)← S(k, j) ∪ {q̃′�Z′}
20 W ← (k, q̃′�Z′, j)

20) neighbors of nodes j and i, respectively. Specifically, for each
outgoing edge (j, k), it stores the L-term Z in L(i, k) on line 7
for generating a potential new summary edge between nodes i and
k. It then searches for each R-term x in R(i, k), and invokes the
constant-time procedure FIND-RULE to find an LCL rule with both
L-term Z and R-term x on lines 8-9. If the LCL rule is valid and
the summary is new (line 10), the summary is inserted to S(i, k)
on line 11 and the corresponding edge is pushed to the worklist
on line 12. Each incoming edge of node i is handled similarly on
lines 13-20. Finally, the algorithm terminates when there are no new
summary edges generated in the worklist. The output of the main
algorithm is a set of summary edges S(i, j). Any LCL-reachability
query between nodes i and j can be answered in constant time by
testing whether q̃�Z is in S(i, j), where q̃�Z corresponds to a final
trellis automata state.

5.2 Handling Gray Nodes
When extending Algorithm 1 for handling a GWTA, the key chal-
lenge is to handle the gray nodes since a summary edge can be
both a gray node summary and a white node summary. For in-
stance, (x, q̃1�[2, w) is a white node summary in Figure 4, and it
becomes a gray node summary if we consider the path string of path
p = x, . . . , v. According to Section 4.2, Qg is a subset of Qw and
the valid q-positions in Qg are depicted as the set Qeor = {q1, q2}.
To distinguish gray node summaries from white node summaries,
we introduce the concept of spurious summaries. Intuitively, any
spurious summary edge cannot be a gray node summary. Formally,

DEFINITION 7. A summary q̃�Z is defined as a spurious summary
if and only if

(i) its q-position q /∈ Qeor or
(ii) it is generated by a spurious L-term.

For example, the summary ˜q1(1�[2 on Level(2) of string “[2)1 in
Figure 4 is a spurious summary since q1(1 /∈ Qeor . Moreover, the
above summary q̃2�# on Level(1) is also a spurious summary, since
the left summary ˜q1(1�[2 is spurious.



To cope with the spurious summaries, we introduce new data
structures to the LCL-reachability algorithm w.r.t. Definition 7.
Handling (i) is straightforward since we can simply check if q ∈
{q1, q2}. For handling (ii), Algorithm 1 needs two extensions. First,
we extend the worklist item from (i, q̃�Z, j) to (i, q̃�Z, j, good),
where the flag good is set to 1 if the current summary q̃�Z is
generated by a non-spurious (i.e., gray node summary) L-term.
Moreover, we introduce a new table Lb(i, j) to represent the set of
Z-positions of all spurious L-terms.

The basic idea of handling (ii) is as follows. For any summary
(i, q̃�Z, j) popped from the worklist, it uses the good and its q-
position to determine if it is a spurious summary. If it is spurious,
we insert Z to Lb(i, j) and otherwise L(i, j). When generating
new summaries, if the R-term symbol matches an L-term symbol
Z ∈ L(i, j) it sets good to 1 in the new worklist item. The flag
good is set to 0 if it matches a Z ∈ Lb(i, j). Finally, a spurious
summary q̃�Z can be changed to a non-spurious summary. We also
update the information and change any summaries that depend on
q̃�Z. Specifically, for a changed summary (i, q̃�Z, j), we remove Z
from Lb(i, k), insert it to L(i, k), and use Z ∈ L(i, k) to update
any summary edge between i and k.

5.3 Context-Sensitive Data-Dependence Analysis Algorithm
Refinement for Dmn. In Algorithm 1, given a worklist item
(i, q̃�Z, j), it only traverses the neighbors k of nodes i and j to gener-
ate a new summary, without taking the edge labels (i.e., L(j, k) and
L(k, i)) into consideration. Consequently, it might generate some
infeasible summaries. For instance, any valid string in Dmn never
begins with a close parenthesis, nor ends with an open parenthe-
sis. In our main algorithm, we use a procedure FEASIBILITY() to
eliminate those infeasible summaries. The procedure requires three
parameters: a summary q̃�Z, an original graph edge label L(i, j),
and a flag ty indicating the type (i.e., incoming or outgoing) of edge
(i, j). It returns a true or false value for the summary feasibility
using a set of heuristics. Our reachability algorithm only inserts
feasible summaries to the worklist. The current heuristics used for
the main algorithm as follows.

• If ty is outgoing and L(i, j) ∈ {(, [}, q must be q1;
• If ty is outgoing and L(i, j) ∈), q /∈ {[, q1[};
• If ty is outgoing and L(i, j) ∈], q /∈ {(, q1(};
• If ty is incoming and L(i, j) ∈ {), ]}, Z must be #;
• If ty is incoming and L(i, j) ∈ (, Z /∈ [;
• If ty is incoming and L(i, j) ∈ [, Z /∈ (;

All rules can be interpreted according to Table 2 and state
transitions in Figure 3(b). For instance, the first heuristic is obtained
due to the fact that the q-position of both Il-rules (1) and (3) is q1,
and q1 never transits to other states.

Main algorithm. Our context-sensitive data-dependence analysis
algorithm is given in Algorithm 2. To determine spurious summaries,
the worklist is extended with an additional flag good and the
original L(i, j) is separated into L(i, j) and Lb(i, j), as discussed
in Section 5.2. The set Good(i, j) represents the q-positions of any
non-spurious summary. For each worklist item (i, q̃�Z, j, good), the
algorithm traverse its outgoing neighbors on lines 5-30 and incoming
neighbors on lines 31-49, respectively.

• Traversing outgoing edges (j, k). The Z-position symbol Z can
be either an entirely new symbol (line 6) or an old symbol in
Lb(i, k) which needs to be updated to L(i, k) (line 20). For new
symbols Z, we determine if it is a spurious summary on lines 7-
9. Then we search for the q-position symbols x ∈ R(i, k). If
Z and x match a valid LCL rule, and the summary edge is also

Algorithm 2: The LCL-reachability algorithm for context-
sensitive data-dependence analysis.

Input :Graph G = (V,E) and LCL rules for Dmn

Output : the sets {S(i, j),Good(i, j) | i, j ∈ V }
1 Initialize W with summary edges of Il-rules
2 while W 6= ∅ do
3 (i, q̃ � Z, j, good)← SELECT-FROM(W )

4 Obtain q and Z from q̃ � Z
5 foreach k ∈ OUT(j) do
6 if Z /∈ L(i, k) and Z /∈ Lb(i, k) then
7 if good and q ∈ {q1, q2} then
8 L(i, k)← L(i, k) ∪ {Z}
9 else Lb(i, k)← Lb(i, k) ∪ {Z}

10 foreach x ∈ R(i, k) do
11 q̃′�Z′ ← FIND-RULE(Z, x)

12 if q̃′�Z′ 6= ∅ and q̃′�Z′ /∈ S(i, k) then
13 if FEASIBLE(q̃′�Z′,L(j, k), out) then
14 S(i, k)← S(i, k) ∪ {q̃′�Z′}
15 if Z ∈ L(i, k) then
16 if q′ ∈ {q1, q2} then
17 Good(i, k)← Good(i, k) ∪ {q′}

18 W ← (i, q̃′�Z′, k, 1)

19 else W ← (i, q̃′�Z′, k, 0)

20 if Z ∈ Lb(i, k) and good and q ∈ {q1, q2} then
21 remove Z from Lb(i, k)
22 L(i, k)← L(i, k) ∪ {Z}
23 foreach x ∈ R(i, k) do
24 q̃′�Z′ ← FIND-RULE(Z, x)

25 if q̃′�Z′ 6= ∅ then
26 if FEASIBLE(q̃′�Z′,L(j, k), out) then
27 S(i, k)← S(i, k) ∪ {q̃′�Z′}
28 if q′ ∈ {q1, q2} then
29 Good(i, k)← Good(i, k) ∪ {q′}

30 W ← (i, q̃′�Z′, k, 1)

31 foreach k ∈ IN(i) do
32 if q /∈ R(k, j) then
33 R(k, j)← R(k, j) ∪ {q}
34 foreach X ∈ Lb(k, j) do
35 q̃′�Z′ ← FIND-RULE(X, q)

36 if q̃′�Z′ 6= ∅ and q̃′�Z′ /∈ S(k, j) then
37 if FEASIBLE(q̃′�Z′,L(k, i), in) then
38 S(k, j)← S(k, j) ∪ {q̃′�Z′}

39 W ← (k, q̃′�Z′, j, 0)

40 foreach X ∈ L(k, j) do
41 q̃′�Z′ ← FIND-RULE(X, q)

42 if q̃′�Z′ 6= ∅ then
43 if q′ ∈ {q1, q2} and q′ /∈ Good(k, j) then
44 Good(k, j)← Good(k, j) ∪ {q′}
45 W ← (k, q̃′�Z′, j, 1)

46 else if q̃′�Z′ /∈ S(k, j) then
47 W ← (k, q̃′�Z′, j, 1)

48 if FEASIBLE(q̃′�Z′,L(k, i), in) then
49 S(k, j)← S(k, j) ∪ {q̃′�Z′}

new (line 12), we insert the feasible summary edge to S(i, k)
on lines 13-14. If the current summary q̃�Z is non-spurious,
we insert an item (i, q̃′�Z′, 1) to W and record it in Good on
lines 17-18. Otherwise, we insert an item (i, q̃′�Z′, j, 0) to W on
line 19. If the symbol Z exists in Lb(i, k) but current summary
edge (i, q̃�Z, j) is not spurious (line 20), we adjust Z to L(i, k)
on lines 21-22. The remain steps to process the new summary
on lines 24-30 is similar to the non-spurious case on lines 11-19.
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Figure 5. Computing new summaries.

• Traversing incoming edges (k, i). For an incoming edge (k, i),
the algorithm needs to search for the Z-positions X in both
L(k, j) and Lb(k, j) to generate a new summary edge. The
major steps of processing Z ∈ Lb(k, j) on lines 35-39 is finding
a matched LCL rule (line 35), inserting the feasible summary
edge to S(k, j) (line 38) and the spurious summary edge to W
(line 39). In the processing of Z ∈ L(k, j) on line 41-49, if
the summary edge is non-spurious, we update the set Good and
insert the corresponding item to W (lines 43-45). Otherwise, we
insert the worklist item only if it is a new summary (lines 46-47).
Finally, we insert the feasible summary to S(k, j) on lines 48-
49.

Upon termination, the table S(i, j) contains all summary edges
and Good(i, j) the q-positions of all non-spurious summary edges.
Given two nodes u and v, any reachability queries can be answered
in O(1) time by checking if q̃2�# ∈ S(u, v) and q2 ∈ Good(u, v).

5.4 Algorithm Soundness and Complexity Analysis
In Section 5.4.1, we discuss the baseline LCL-reachability algo-
rithm in Algorithm 1 that only generates summaries according to
Section 5.1.2, i.e., without taking infeasible or spurious summaries
into consideration. Based on the discussion, we then give the analy-
sis for Algorithm 2 in Section 5.4.2.

5.4.1 Analysis for Algorithm 1
Let φ denote the exact solution and φLCL the solution obtained
by our algorithm. We establish the soundness by showing that
(u, q̃f�Zf , v) ∈ φ =⇒ (u, q̃f�Zf , v) ∈ φLCL for all u and v,
where q̃f�Zf represents an accepting state. Initially, our algorithm
correctly processes all edge labels according to the Il-rules. We
consider an arbitrary summary edge (u, q̃�Z, v) in Figure 5. Fig-
ure 5(a) gives the trellis automaton representation of (u, q̃�Z, v).
Without loss of generality, we suppose the summary is generated

via a δl-rule q̃�Z
δ

:= �̃Z1 q̃2� . Figure 5(b) shows the corresponding
path considered in our algorithm. The Z-position Z1 ∈ L(u, v)
is generated by any summary edge (u, q̃1�Z1, y

′), where (y′, v) is
a directed edge in the input graph. Our algorithm enumerates all
such summary edges (u, q̃1�Z1, y

′) for Z1. Let X = {x0, . . . , xi}
and Y = {y0, . . . , yi}. It is straightforward that y ∈ Y . Similarly,
q2 ∈ R(u, v) is generated by enumerating all x′ ∈ X . Therefore,
x ∈ X and the summary q̃�Z is inserted to S(u, v). According to
Lemma 2, every summary edge can be generated in a similar manner.
As a result, the algorithm eventually inserts the summary q̃f�Zf to
S(u, v).

Next we discuss the time complexity of Algorithm 1. Let M
be the equivalent DSTM corresponding to the input LCL rules,
where q denotes the number of states and Z the size of work tape
alphabet in M . Given a graph with n nodes and m edges, there are
O(qZ) summary edges for each node pair. On line 5, the algorithm
traverses the outgoing neighbors k of each summary edge (i, q̃�Z, j).
Moreover, for each k, the algorithm also searches for the q-positions

x ∈ R(i, k). Due to the construction, |x| is equal to q. Let ∆j denote
the out-degree of node j. The total number of steps involved for each
summary edge is q · Σ(i,j)∆j = q · Σi(Σj∆j) = qnm. Similarly,
the total number of steps of the loop on lines 13-20 is Znm. As
a result, the time complexity of processing all summary edges in
Algorithm 1 is O((qZ)(q + Z)mn). Combining the analysis, we
state the following theorem:

THEOREM 4. Given a directed graph with n nodes andm edges, an
HTA with the equivalent DSTM M , Algorithm 1 computes a sound
approximation of LCL-reachability in O(|M̃ |mn) time with O(n2)
space, where |M̃ | = O(q2Z + qZ2), q and Z are the numbers of
states and work tape symbols in M . Any LCL-reachability query
can be answered in O(1) time.

5.4.2 Analysis for Algorithm 2
This section discusses the soundness and complexity of our context-
sensitive data-dependence analysis algorithm. Due to Lemma 1,
Algorithm 2 is based on a correct set of LCL rules.

Let φb and φs denote the sets of infeasible and spurious sum-
maries, and φLCL, φcsdd the sets of summaries obtained by Algo-
rithms 1 and 2. Again, the set φ denotes the exact solution. Based
on Theorem 4, our basic idea to establish the soundness is to show
φcsdd = φLCL\{φb∪φs} and e /∈ φ for all e ∈ φb∪φs. The e /∈ φ
part is immediate due to the discussions in Sections 5.2 and 5.3. We
also note that, unlike infeasible summaries, Algorithm 2 indeed
inserts spurious summaries to the output set S.

According to Lemma 2, both Algorithms 1 and 2 generate new
summary edges S(i, j) using L-terms L(i, j) and R-terms R(i, j).
One of the major structural differences between Algorithms 1 and 2
is that Algorithm 1 only traverses L(i, j) and R(i, j) to generate
the summary edge e ∈ S. We denote the L(i, j) in Algorithm 1 as
L1(i, j). However, Algorithm 2 uses four loops to traverse Lb(i, j),
L(i, j) and R(i, j). Due to lines 7-9 and lines 21-22, we have
L1(i, j) = Lb(i, j) ∪ L(i, j). In other words, the graph traversals
in the two algorithms are identical. Let S1 and S2 be the output
sets S of Algorithms 1 and 2. For a worklist summary edge in
Algorithm 2, the traversal inserts every element in S1 except the
infeasible summaries. Consequently, we have S1 = S2 ∪ φb, i.e.,
S2 = φLCL \ φb.

On the other hand, Algorithm 2 uses the set Good to remem-
ber all non-spurious summaries. On lines 16, 28 and 43, Algo-
rithm 2 determines the set of non-spurious summaries if and only
if q′ /∈ {q1, q2} and the Z-position of L-term is in L(i, j), which is
precisely φs. Finally, according to the query answering discussed in
Section 5.3, we have φcsdd = S2 ∩ φs. Putting everything together,
we have,

φcsdd = S2 ∩ φs = {φLCL \ φb} \ φs = φLCL \ {φb ∪ φs}.

The analysis on time complexity is also based on Theorem 4. As
mentioned earlier, the graph traversal parts of both Algorithms 1
and 2 are identical. We only need to bound the number of summary
edges inserted to W . We first note that, there are six sites inserting a
summary edge to W in Algorithm 2. Among them, on line 30,
an item is inserted only if Z ∈ Lb(i, k). Z is then removed
from Lb and is never added back again. Similarly, on line 45, an
item is inserted to W only if q′ /∈ Good(k, j), and q′ is added
to Good(k, j) immediately. For the other four sites, an item is
inserted only if q̃′�Z′ /∈ S, and it is immediately added to S. As
a result, a summary edge (i, q̃′�Z′, j) can be added into W for at
most three times.5 Let x and X denote the number of R-terms and
L-terms to generate a summary. According to the discussion of
Theorem 4, the total number of steps for processing each summary

5 A tighter analysis can bound the number to 2.



is 3(|x| + |X|)mn = O((|x| + |X|)mn). On the other hand, the
number of summaries is bounded by the number of LCL rules for
Dm′n′ . In Table 2, the number of all rules is dominated by rules
(9), (11), (14) and (16) with O(m′n′) different trellis automaton
states. Therefore, the total number of processing all summary
edges is O((m′n′)(|x| + |X|)mn). Moreover, according to the
GWTA KDmn in Section 4.2, we have |x| = 2 + 2m′ + 2n′ and
|X| = 1 +m′ + n′. Finally, we have the following theorem.

THEOREM 5. Given a directed graph with n nodes and m edges,
an interleaved matched-parenthesis language Dm′n′ , Algorithm 2
computes a sound approximation in O(|D̃|mn) time with O(n2)
space for context-sensitive data-dependence analysis, where |D̃| =
O((m′ + n′)m′n′), m′ and n′ denote the sizes of the two Dyck
languages in Dm′n′ . Any query can be answered in O(1) time.

6. Evaluation
To demonstrate the utility of the proposed LCL-reachability frame-
work, we apply it to two practical context-sensitive data-dependence
analyses. Specifically, we compare the proposed LCL-reachability
algorithm against the traditional CFL-reachability algorithm. The
experimental results demonstrate that the LCL-reachability frame-
work considerably improves existing approximations based on CFL-
readability in terms of both precision and scalability.

6.1 Experimental Setup
Client analyses Our evaluation is based on two practical client
analyses: A context-sensitive field-sensitive alias analysis for
Java [40] and a context-sensitive field-sensitive taint analysis for An-
droid apps [10]. In both applications, context-sensitivity is matched
using a Dyck language Dm of size m, where each open parenthesis
“(i” represents a method call and each close parenthesis “)i” the
corresponding method return. Filed-sensitivity is matched using
another Dyck language Dn of size n:

• In the alias analysis, each field-sensitivity edge (u, [f , v) denotes
that the field f of object u may point to v. For each field points-
to edge (u, [f , v), the analysis builds an inverse edge (v, ]f , u).
Similarly, the context-sensitivity edges representing calls and
returns are also augmented with the corresponding inverse edges.
As a result, the graphs of the alias analysis are bidirected.
The bidirectedness is a prerequisite for CFL-reachability-based
formulations of pointer analysis [30].
• In the taint analysis, each field-sensitivity edge (u, [f , v) denotes

that the value of u flows to the filed f of variable v. Similarly,
the (u, ]f , v) represents that variable v reads the field f of u.

In both analyses, the parentheses in Dm and brackets in Dn
should be matched simultaneously. As a result, they each perform a
context-sensitive data-dependence analysis using the non-context-
free language Dm ∩Dn.

Evaluated algorithms We apply both the LCL-reachability algo-
rithm and the traditional CFL-reachability algorithm to compute the
all-pairs L-reachability in the two client applications, where L is
Dmn = Dm ∩Dn. The LCL-reachability formulation can precisely
handle Dmn. However, the CFL-reachability formulation only pre-
cisely describes eitherDm orDn. Therefore, we consider four CFL-
reachability variants for approximation. We first consider the precise
handling of field-sensitivity Dn. To cope with context-sensitivity
Dm using CFL-reachability, two traditional treatments are: (1) mak-
ing it context-insensitive and (2) approximating Dm using a regular
language Rm. Specifically, the context-insensitive field-sensitive
(CIFS) variant is essentially a Dyck language Dn that deems any
node connected by an edge labeled by (i, )i ∈ Dm as reachable.
The regular-approximating context-sensitive field-sensitive (CRFS)
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Figure 6. The finite state automaton approximating a Dyck lan-
guage Dm. There is an additional accepting state qx for accepting
arbitrary parentheses beyond k. We omit qx here for brevity.

variant is Dn ∩ Rm, where Rm is the approximation regular lan-
guage shown in Figure 6. We follow the standard method to con-
struct Rm [7, 9]. Since the size of Rm grows exponentially in terms
of k, we set k = 1 in our CFL-reachability algorithm to make
it scale. Finally, the context-sensitive field-insensitive (CSFI) and
context-sensitive and regular-approximating field-sensitive (CSFR)
variants can be similarly defined. Our evaluation compares the LCL-
reachability algorithm (Lin) against the CFL-reachability algorithm
based on the CIFS, CRFS, CSFI and CSFR approximations.

Graph collection We select the benchmark program according to
the original client analyses. Specifically, for the Java alias analy-
sis [40], we use the standard DaCapo-2006-10-MR2 suite [1]. For
the Android taint analysis [10], we use the 15 Contagio malware
apps from the artifacts of the original reference. We adopt the imple-
mentations of both analyses to derive the graphs.6 All benchmark
programs are processed using Oracle JDK 1.7.0 51.

Implementation We implement all algorithms in C++, compiled
with g++-4.9.3 at the -O3 optimization level. The algorithms share
similar data structures for storing summary edges. The core data
structure used in our algorithms is the sparse bitmap, which is
taken from the GCC compiler. To obtain information on running
time and memory consumption, we repeat each experiment three
times and report the averages. All experiments were conducted on a
64bit machine with an Xeon X7542 2.6GHz processor and 128 GB
memory, running Ubuntu 14.04.

6.2 Graph Characteristics
Table 3 gives the graph characteristics of the alias analysis and taint
analysis, respectively. In general, the graphs of the alias analysis
are significantly larger than those of the taint analysis. On the other
hand, the graphs of both applications are sparse. On average, we have
|E|/|V | ≈ 2.5. However, the graph densities of the taint analysis,
ranging from 2.0 to 3.8, appear to vary more significantly than those
of the alias analysis. Finally, we also note that the numbers of calls
are much larger than those of fields in both applications.

6.3 Precision Comparison
Tables 4 and 5 give the experimental results for both client analyses.
We compare precision in terms of S-summary edge counts. In
Table 5, we can see that the context-sensitive field-sensitive CFL-
reachability variants (i.e., CRFS and CSFR) are more precise than
the CIFS and CSFI variants. However, they are also more expensive
to compute, and are not scalable for the alias analysis. In both
client analyses, it is consistent that the CFL-reachability framework
gains more precision benefits from context-sensitivity (i.e., the CSFI

6 The alias analysis for Java is at http://www.ics.uci.edu/~guoqingx/
tools/alias.htm, and the taint analysis for Android is at https://
github.com/proganalysis/type-inference.



Program Graph
V E #calls #fields

antlr 29,831 69,768 7,103 1,246
bloat 36,181 82,241 10,400 1,360
chart 67,535 161,186 21,637 3,132
eclipse 30,981 72,354 7,392 1,346
fop 61,016 142,748 18,597 2,857
hsqldb 27,494 65,277 6,308 1,160
jython 36,162 104,260 11,137 1,398
luindex 28,595 67,462 6,519 1,228
lusearch 29,530 71,286 6,685 1,275
pmd 31,333 73,232 7,186 1,322
xalan 27,358 64,735 6,217 1,152

(a) Alias analysis graphs.

Program Graph
V E #calls #fields

Backflash 544 2,048 455 6
BattaryDoctor 1,674 4,790 1,132 87
DroidKungFu 734 1,983 367 39
Fakebanker 434 1,103 209 25
Fakedaum 1,144 2,603 715 42
Faketaobao 222 450 114 10
Jollyserv 488 998 236 28
Loozfon 152 323 78 3
Phospy 4,402 15,660 2,795 118
Roidsec 553 2,026 362 13
Scipiex 1,809 5,820 844 173
simhosy 4,253 13,768 2,894 330
Skullkey 18,862 69,599 12,316 1,340
Uranai 568 1,246 357 8
Zertsecurity 281 710 166 9

(b) Taint analysis graphs.

Table 3. Graph characteristics of two client analyses. The last two columns give the numbers of different call and field edges in the graphs.

Program Precision (#S-pairs) Time (s) Space (MB)
CIFS CSFI Lin ∩1 ∩2 CIFS CSFI Lin CIFS CSFI Lin

antlr 2,153,091 1,827,705 1,519,527 1,511,902 1,511,512 165.46 768.11 7.76 674.42 913.20 3822.73
bloat 2,305,351 1,904,837 1,588,287 1,580,459 1,580,065 195.15 1161.30 11.38 800.62 1142.45 5632.24
chart 6,181,087 5,746,258 4,868,772 4,648,923 4,648,289 1170.75 7190.24 70.96 1588.62 2405.58 18024.00
eclipse 2,300,305 1,826,423 1,515,782 1,507,400 1,506,946 190.66 794.00 9.20 709.95 948.41 4218.52
fop 4,733,519 4,069,404 3,575,835 3,367,863 3,367,356 824.71 4393.99 45.07 1443.70 2166.72 14220.40
hsqldb 2,094,016 1,814,974 1,513,500 1,503,197 1,502,866 149.07 675.71 7.46 630.21 834.00 3534.08
jython 2,786,450 1,878,085 1,557,348 1,548,146 1,547,706 243.20 1225.47 13.33 840.79 1271.31 5420.17
luindex 2,151,119 1,820,530 1,513,628 1,505,988 1,505,573 161.44 698.43 7.33 657.75 866.41 3484.07
lusearch 2,199,729 1,824,220 1,517,576 1,507,395 1,507,027 171.55 718.47 9.75 644.55 895.12 3909.12
pmd 2,353,255 1,879,584 1,570,281 1,561,769 1,561,279 191.28 796.97 10.22 709.25 950.11 4181.22
xalan 2,078,462 1,814,712 1,511,005 1,502,976 1,502,586 147.38 665.81 7.47 622.53 828.00 3390.27

Table 4. Evaluation results of the alias analysis. The S-pairs column shows the numbers of S-summary edges, where S denotes the start
symbol in CFL-reachability and the accepting states in LCL-reachability, respectively. The ∩1 column shows the numbers of common S-pairs
of CIFS and CSFI, and the ∩2 column shows those for CIFS, CSFI, and Lin, respectively. Since all algorithms obtain over-approximate results,
the fewer S-pairs, the better the precision.

Program Precision (#S-pairs) Time (s) Space (MB)
CIFS CRFS CSFI CSFR Lin CIFS CRFS CSFI CSFR Lin CIFS CRFS CSFI CSFR Lin

Backflash 32,081 11,679 7,115 6,819 597 0.09 996.11 0.44 7.10 0.02 11.4 2,054.8 14.0 56.7 16.1
BattaryDoctor 109,662 - 15,978 - 3,071 1.86 - 2.25 - 0.12 43.6 - 47.6 - 97.0
DroidKungFu 41,072 - 11,813 9,523 1,510 0.44 - 0.89 178.34 0.03 18.6 - 19.9 686.3 23.8
Fakebanker 12,098 4,439 2,463 2,363 542 0.08 180.40 0.08 8.90 0.01 9.4 1,038.5 10.4 138.1 9.6
Fakedaum 59,104 - 6,480 6,237 1,560 0.50 - 0.59 206.43 0.04 24.3 - 27.4 1,246.2 42.9
Faketaobao 3,196 1,179 732 676 274 0.02 5.28 0.02 0.34 0.00∗ 4.7 163.9 5.5 21.5 3.4
Jollyserv 22,960 12,449 1,463 1,182 801 0.19 937.41 0.06 5.91 0.02 10.9 1,519.1 11.2 200.3 11.9
Loozfon 3,044 1,865 646 618 218 0.01 2.15 0.02 0.06 0.00∗ 3.4 37.5 4.2 5.0 2.6
Phospy - - - - 1,158K - - - - 35.57 - - - - 3,383.3
Roidsec 81,485 - 18,598 16,592 611 0.38 - 1.88 55.49 0.02 - 16.7 18.1 167.8 16.8
Scipiex 976,255 - 71,759 - 146,913 333.50 - 21.69 - 2.74 476.2 - 93.3 - 478.6
simhosy 1,711,493 - 171,052 - 30,736 833.30 - 177.33 - 1.46 1,242.8 - 262.7 - 670.9
Skullkey - - - - 2,703K - - - - 190.40 - - - - 23,290.8
Uranai 24,802 11,379 1,062 874 587 0.07 554.68 0.07 0.90 0.02 9.9 1,210.1 13.0 47.6 14.0
Zertsecurity 24,534 9,361 2,512 1,705 479 0.08 131.64 0.06 1.06 0.01 7.5 453.5 7.0 26.6 6.0

Table 5. Evaluation results of the taint analysis. The time budget for all algorithms is 1,000 seconds. Each “-” mark indicates a timeout, and
each “∗” a running time less than 0.01 seconds.

variants are more precise than the CIFS variants) since there are
more call edges.

Tables 4 and 5 also demonstrate that the LCL-reachability
algorithm is the most precise. Specifically, for the alias analysis, our
algorithm is 1.2 times more precise than the best CSFI variant of
CFL-reachability. For the taint analysis, the precision improvement
is more dramatic, i.e., it achieves 6.5 times precision improvements

versus the best CSFR variant. We have also tried to increase the
k of Rn in the CSFR variant. But the precision gain is marginal
since the numbers of the field edges are significantly smaller than
those of the call edges. We note that the precision improvement of
LCL-reachability in the alias analysis is not as significant as the
taint analysis. This may be due to the fact that the graphs in the alias
analysis are bidirected — bidirectedness introduces more spurious



summary edges since the LCL-reachability algorithm computes
an over-approximation of the reachability information. Section 7.2
gives a detailed discussion on this approximation.

In general, the precision comparison indicates that the LCL-
reachability framework benefits from the precision of both context-
and field-sensitivities. It is more precise than the traditional CFL-
reachability framework. In addition, Table 4 also gives the num-
bers of alias pairs by counting the common S-edges of two CFL-
reachability algorithms (column ∩1) and all three evaluated algo-
rithms (column ∩2). We notice that the CFL-reachability algorithm
that combines both CIFS and CSFI is slightly more precise than the
LCL-reachability algorithm. It is interesting to further investigate
the connection between LCL-reachability and CFL-reachability that
combines CIFS and CSFI.

6.4 Performance Comparison
Tables 4 and 5 list the running time and memory consumption
for each algorithm. In CFL-reachability, a more precise variant
computes more intermediate summary edges. Therefore, it requires
more running time and memory. For instance, in Table 4, the running
time of the more precise CSFI variant is 4.8 times longer than that
of CIFS. In Table 5, the most precise CSFS variant requires 124.3
times more time than the cheapest CIFS variant on average.

The LCL-reachability algorithm is faster than the traditional
CFL-reachability algorithm. In terms of the asymptotic time com-
plexity, the LCL-reachability algorithm runs in O(mn) time since
each new summary edge is obtained using only original edges in the
input graph. And the graphs in the two client analyses are all sparse
graphs. On the contrary, the CFL-reachability algorithm exhibits
a subcubic time complexity. From Tables 4 and 5, we can see that
our proposed LCL-reachability algorithm is the fastest one while
achieving the best precision at the same time. In both client analyses,
it computes the results in minutes. For most benchmark programs, it
finishes within 10 seconds. Specifically, in Table 4, our algorithm is
19.1 times faster than the CIFS CFL-reachability variant. In Table 5,
it is 62.0 times faster than the best CIFS variant.

The space complexities of both LCL-reachability and CFL-
reachability algorithm are quadratic. In practice, the comparison of
memory consumption varies in different client analysis. For the alias
analysis, the LCL-reachability algorithm consumes 4.8 times more
memory than the CSFI CFL-reachability variant. However, the mem-
ory requirement of LCL-reachability is still modest. For the taint
analysis, LCL-reachability’s memory consumption is comparable to
those of the CIFS and CSFI CFL-reachability variants.

7. Further Discussions
7.1 Extending the Framework
In practice, the class of LCL is capable of modeling more properties
encountered in the client analysis. For example, the taint analysis
considered in Section 6 obtains the value flows that start and end
in the same method (i.e., the Dm in Dmn properly matches all
method calls and returns). In practice, the client taint analysis may
also be interested in obtaining the value flows between different
methods [10, 22]. The DSTM discussed in Section 4.1 can be
easily extended, by introducing additional transitions to bypass
the “(” and “#” symbols during a right-to-left sweep, to accept
the Dyck language augmented with outstanding open and close
parentheses. We also note that many CFLs in the existing CFL-
reachability formulations belong to the class of LCL, such as the
alias analysis for C [43], the interprocedural dataflow analysis [33]
and the polymorphic flow analysis [28].

The LCL-reachability framework can also be applied in demand-
driven analyses to compute the reachability between any two given
nodes. During graph traversal, a path string in LCL can be rec-

ognized in quadratic time, while it takes subcubic time to recog-
nize a CFL string. Therefore, theoretically, the LCL-reachability
framework is more efficient than the CFL-reachability framework.
However, many CFLs (e.g., the Dyck language) encountered in prac-
tice are deterministic CFLs which can be recognized in linear time.
In this case, adopting CFL-reachability has a clear advantage. It
is interesting future research to investigate better demand-driven
LCL-reachability algorithms.

7.2 Understanding the Approximation
Algorithms 1 and 2 are sound approximations of the exact LCL-
reachability problem. We briefly discuss two main sources of
approximation in our algorithms.

The path length problem. Consider Figure 4, each summary edge
on Level(k) is generated by two summary edges on Level(k+1). For
chain graphs, this always holds. Therefore, our algorithm computes
the exact solution. When computing summary edges for arbitrary
graphs shown in Figure 5(a), the algorithm cannot guarantee that
two summaries q̃1�Z1 and q̃2�Z2 are on the same level. It is infeasible
to simultaneously track the level and utilize the memorization
on summary edges — the resulting algorithm may not terminate.
Therefore, our algorithm approximates the exact solution by treating
q̃1�Z1 and q̃2�Z2 as always on the same level.

The fixed path problem. According to Lemma 2, the LCL-
reachability algorithm generates new summary edges S(u, v) using
both L- and R-terms. This appears to be the main source of the
imprecision of LCL-reachability. Consider the path between nodes
u and v in Figure 5(b). In the chain graph case, there is only one path
connecting nodes u and v. Again, our algorithm computes the exact
solution. However, for arbitrary graphs, the Z1 ∈ L(u, v) can be
generated via any y ∈ {y0, . . . , yi}. Similarly, q1 ∈ R(u, v) can be
generated via any x ∈ {x0, . . . , xi}. They belong to two different
paths. Our algorithm approximates the situation by generating a new
summary between u and v, without guaranteeing that u, x, y and
v are on the same path. A formal treatment of the approximation
is extremely helpful to understand the nature of LCL-reachability,
which we leave as an open problem for future research.

7.3 Design Choices for Practical Analyses
Based on an exact L-reachability formulation, the proposed LCL-
reachability framework enables more design choices for practical
analyses than the traditional CFL-reachability framework. Analysis
designers can implement more suitable STAs for specific analysis
problems. For instance, Section 5 describes LCL-reachability algo-
rithms based on two kinds of STAs: HTAs for Algorithm 1 and a
GWTA for Algorithm 2. According to Section 5.4.2, Algorithm 2
achieves better precision for the context-sensitive data-dependence
analysis problem since φcsdd ⊆ φLCL. Algorithm 2 based on a
GWTA also benefits from the set of heuristics designed for ruling
out infeasible and spurious summaries. Moreover, we also notice
that when the input graph is a tree, our LCL-reachability algorithm
is able to obtain the exact solution.7 In practice, it would be interest-
ing to study important characteristics (e.g., treewidth) of the graphs
generated from real-world programs to develop better analysis algo-
rithms. Performance wise, LCL-reachability operates on summary
edges that are paired with one DSTM state and one DSTM tape sym-
bol. It would thus also be interesting to develop better data structures
and algorithms for indexing and querying the set of summary edges,
or design efficient persistence schemes [38] to keep the intermediate
results for staged analyses.

7 Any two nodes in the input tree are connected via only one path. Therefore,
the LCL-reachability problem can be reduced to LCL parsing.



8. Related Work
Context-sensitive data-dependence analysis is a rich abstraction for
many program analyses [31]. The problem is known to be undecid-
able [31]. Therefore, every solution must resort to approximations.
In practice, many analyses approximate context sensitivity; exam-
ples include a variety of context-insensitive and context-sensitive
interprocedural analyses [35, 40, 41]. In a seminal work, Sharir
and Pnueli describe the functional and call string approaches to
interprocedural analysis [34]. The latter one also corresponds to the
k-CFA approach for functional programming languages [21]. In set
constraint formulations, Kodumal and Aiken propose a general an-
notated framework to simultaneously match regular and context-free
properties [17]. These frameworks are very similar to the CS-k vari-
ant considered in our evaluation, with the typical exponential time
complexity in k. In program verification, the reachability problem
of multistack pushdown systems (MPDS) has been studies to model
concurrent programs [18–20]. Many existing MPDS algorithms
work with bounded constraints. Moreover, the formal language rec-
ognized by MPDS is too expressive to be adopted in our reachability
problem.

In general, nearly all current approaches to context-sensitive
data-dependence analyses employ approximate formulations since
the actual analysis requires matching the intersection of two context-
free properties [10, 35, 40]. The predominant framework for context-
sensitive data-dependence analysis is CFL-reachability [30]. CFL-
reachability depicts a program analysis problem using graph reach-
ability. In the literature, many practical analyses have adopted
the CFL-reachability formulation [3, 10, 26, 35, 40, 41]. Tradi-
tional CFL-reachability algorithms exhibit an O(n3) time com-
plexity [30, 33]. The complexity is improved to O(n3/logn) by
Chaudhuri using the Four Russians’ trick [4]. Extensive effort has
been devoted to improve the scalability of CFL-reachability algo-
rithms [8, 35, 39, 42]. On the other hand, the time complexity for
CFL-reachability is extremely hard to improve as it contains the
CFL-recognition problem [30]. Improved results are only known
for special cases [16, 41]. Recently, Tang et al. propose a new
TAL-reachability formulation, which improves the scalability of
CFL-reachability on constructing compact method summaries [36].
However, TAL is a super class of CFL and the reachability algo-
rithm exhibits an O(n6) complexity. LCL-reachability is the first
precise formulation for context-sensitive data-dependence analy-
sis. The O(mn) time complexity of LCL-reachability algorithm is
asymptotically faster than all previous approaches.

9. Conclusion
This paper has presented a new LCL-reachability framework. We
have instantiated the framework on context-sensitive structure-
transmitted data-dependence analysis, a rich abstraction for many
practical program analyses. Our work provides a new perspective
for this undecidable problem. The LCL-reachability formulation
precisely models the problem since LCL contains the interleaved
matched-parenthesis language, while our algorithm computes a
sound approximation. We have also applied the LCL-reachability
framework on two practical client analyses. The evaluation results
show that our proposed LCL-reachability algorithm is both more
precise and efficient than algorithms based on the traditional CFL-
reachability formulation.
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(3) q̃1�Z
δ
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Table 6. LCL rules for D1, where Z = {(1,#}. The accepting
state of the trellis automaton is q̃2�#.
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Figure 7. Illustrations on DSTM and HTA. The HTA is obtained
through the original part (ii) construction.
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A. On the Equivalence of HTA and DSTMs
The work of Ibarra and Kim [11] has shown that the deterministic
homogeneous trellis automata (HTA) and the deterministic simple
Turing machine (DSTM) are equivalent. The proof [11, Thm. 5.1]
contains two parts: (i) Given an HTA, one can construct a DSTM
that recognizes the same language; and (ii) given a DSTM, one can
construct an equivalent HTA as well. However, the proof of part (ii)
is not constructive.

This section gives a counterexample based on part (ii) construc-
tion of the original proof, discusses the root cause, and gives a
corrected proof establishing the equivalence result.

A.1 A Counterexample
Let us use the DSTM Dm = (Qm,Σ,Γm, δm, q0m , Fm) in Exam-
ple 1 to recognize D1. The same DSTM also appears in the original
reference [11, Example 4.1]. Following the part (ii) construction,
we obtain an HTA K = (Σ, Q, I, δ, F ), where Q = {q̃�Z | q ∈
Qm, Z ∈ Γm}, F = {q̃2�#}. The transition functions δ and I are
shown in Table 6.

Now, let us use the two devices to process an input “)1(1)1”. We
give the DSTM and HTA in Figure 7. The DSTM configuration
after processing the first character )1 is given in Figure 7(a). The
DSTM head now points to the start marker $ which corresponds to
an end-of-right-to-left sweep. The DSTM intends to start a left-to-
right sweep according to rules R9 and R10 in Example 1. However,
the DSTM stops moving since δ((1, $, ε) is not a valid transition.
According to the definition, the DSTM correctly rejects the input
string. On the other hand, the HTA in Figure 7(b) processes the
string and outputs an accepting state q̃2�#.



A.2 Discussion
Let us revisit the restrictions on DSTMs in Definition 6. All state
transitions can be divided into four categories: left-to-right (L2R)
transitions, end-of-left-to-right (EOL) transitions, right-to-left (R2L)
transitions and end-of-right-to-left (EOR) transitions. Among them,
all EOR transitions are in the form δ(q, $, ε) = (q0, $,+1), where
q ∈ Q \ {q0} due to the DSTM restriction (5).

The major problem of the part (ii) construction is that it implicitly
assumes the EOR transition to be total, i.e., the EOR transitions
always handle q for all q ∈ Q \ {q0}. However, the totality of EOR
transitions is not a requirement for DSTMs. Therefore, for some
state q′ that is not depicted by any EOR transition, the DSTM stops
moving and rejects the string. On the contrary, the constructed HTA
processes the string and may accept it as described in Section A.1.

The key idea for our correction is to depict the non-totality
of EOR transitions. Due to the isomorphism between HTA and
DSTMs [11], we observe that the leftmost nodes on each HTA level
correspond to EOR transitions.8 Therefore, we use the white nodes
to denote the original HTA nodes, and introduce gray nodes in our
GWTA. Specifically, the set of gray node states Qg = {q̃�Z | q ∈
Qeor , Z ∈ Γ} is a subset of Qw, and explicitly describes all valid
EOR transitions.

Finally, we discuss the GWTA processing on string “)1(1)1”.
According to the GWTA construction, we have Qeor = {q1, q2}.
On the bottom level of the trellis automaton in Figure 7(b), we have
(̃1�# /∈ Qg because (1 /∈ Qeor . Since the GWTA is built in a bottom-
up manner, the ancestor of node (̃1�# will not be generated due to
the gray node transition δg : Qg ×Qw → Qg . Consequently, the
GWTA rejects the string.

A.3 Proof of Theorem 3
Proof. To establish the correctness, it suffices to show that every
DSTM transition can be simulated by the GWTA. According
to Section A.2, there are four cases to consider for all DSTM
transitions:

• L2R transitions: They enable a DSTM to read the next input
character. Any trellis automaton can naturally handle them.
• R2L transitions: Each state transition of white nodes δw :
Qw × Qw → Qw correspond to each R2L transition due to
the isomorphism between the two models.
• EOL transitions: Every EOL transition reads a new input char-

acter which is simulated by the initial function Il.
• EOR transitions: The EOR transitions specify the valid states

upon reaching the start marker $. According to Section A.2,
those states are depicted asQg . Moreover, GWTA propagates the
Qg information for every gray node on Level(k) to its ancestor
on Level(k − 1) using δg : Qg ×Qw → Qg .

Finally, the GWTA handles all four kinds of DSTM transitions. �

A.4 The equivalence of HTA and DSTMs
The part (i) of the original proof can be reused to give the construc-
tion from an HTA to a DSTM. To establish the equivalence result, it
suffices to show the construction from a DSTM to an HTA. Due to
Theorem 3, we can construct an equivalent GWTA from a DSTM.
A GWTA is essentially an STA. According to Theorem 1, we can
also effectively construct an equivalent HTA from an STA. This
completes the part (ii) construction. Based on the discussion, we
obtain the equivalence result:

THEOREM 6. L(DSTM ) = L(HTA).

8 A more formal discussion on the isomorphism can be found in the work of
Okhotin [25]. Informally, a trellis automaton simulates DSTM moves along
the gray arrows shown in Figure 7(b).

References
[1] DaCapo benchmark suite. http://dacapobench.org/.
[2] R. Alur and P. Madhusudan. Visibly pushdown languages. In STOC,

pages 202–211, 2004.
[3] O. Bastani, S. Anand, and A. Aiken. Specification inference using

context-free language reachability. In POPL, pages 553–566, 2015.
[4] S. Chaudhuri. Subcubic algorithms for recursive state machines. In

POPL, pages 159–169, 2008.
[5] K. Culik II, J. Gruska, and A. Salomaa. Systolic trellis automata I.

International Journal of Computer Mathematics, 15:195–212, 1984.
[6] K. Culik II, J. Gruska, and A. Salomaa. Systolic trellis automatat II.

International Journal of Computer Mathematics, 16:3–22, 1984.
[7] M. A. Harrison. Introduction to Formal Language Theory. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1978.
[8] N. Hollingum and B. Scholz. Towards a scalable framework for context-

free language reachability. In CC, pages 193–211, 2015.
[9] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,

Languages and Computation. Addison-Wesley, 1979.
[10] W. Huang, Y. Dong, A. Milanova, and J. Dolby. Scalable and precise

taint analysis for Android. In ISSTA, pages 106–117, 2015.
[11] O. H. Ibarra and S. M. Kim. Characterizations and computational

complexity of systolic trellis automata. Theor. Comput. Sci., 29:123–
153, 1984.

[12] O. H. Ibarra, M. A. Palis, and S. M. Kim. Designing systolic algorithms
using sequential machines. In FOCS, pages 46–55, 1984.

[13] O. H. Ibarra, S. M. Kim, and S. Moran. Sequential machine charac-
terizations of trellis and cellular automata and applications. SIAM J.
Comput., 14(2):426–447, 1985.

[14] A. K. Joshi, L. S. Levy, and M. Takahashi. Tree adjunct grammars.
Journal of Computer and System Sciences, 10(1):136–163, 1975.

[15] V. Kahlon. Boundedness vs. unboundedness of lock chains: Character-
izing decidability of pairwise CFL-reachability for threads communi-
cating via locks. In LICS, pages 27–36, 2009.

[16] J. Kodumal and A. Aiken. The set constraint/CFL reachability connec-
tion in practice. In PLDI, pages 207–218, 2004.

[17] J. Kodumal and A. Aiken. Regularly annotated set constraints. In PLDI,
pages 331–341, 2007.

[18] S. La Torre and M. Napoli. Reachability of multistack pushdown
systems with scope-bounded matching relations. In CONCUR, pages
203–218, 2011.

[19] S. La Torre, P. Madhusudan, and G. Parlato. A robust class of context-
sensitive languages. In LICS, pages 161–170, 2007.

[20] S. La Torre, M. Napoli, and G. Parlato. Scope-bounded pushdown
languages. Int. J. Found. Comput. Sci., 27(2):215–234, 2016.

[21] M. Might, Y. Smaragdakis, and D. V. Horn. Resolving and exploiting
the k-CFA paradox: illuminating functional vs. object-oriented program
analysis. In PLDI, pages 305–315, 2010.

[22] A. Milanova, W. Huang, and Y. Dong. CFL-reachability and context-
sensitive integrity types. In PPPJ, pages 99–109, 2014.

[23] M. Nederhof. Practical experiments with regular approximation of
context-free languages. Computational Linguistics, 26(1):17–44, 2000.

[24] A. Okhotin. On the closure properties of linear conjunctive languages.
Theor. Comput. Sci., 1-3(299):663–685, 2003.

[25] A. Okhotin. On the equivalence of linear conjunctive grammars and
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