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Abstract
Almost all modern production software is compiled with op-

timization. Debugging optimized code is a desirable function-

ality. For example, developers usually perform post-mortem

debugging on the coredumps produced by software crashes.

Designing reliable debugging techniques for optimized code

has been well-studied in the past. However, little is known

about the correctness of the debug information generated

by optimizing compilers when debugging optimized code.

Optimizing compilers emit debug information (e.g., DWARF

information) to support source code debuggers. Wrong de-

bug information causes debuggers to either crash or to dis-

play wrong variable values. Existing debugger validation

techniques only focus on testing the interactive aspect of de-

buggers for dynamic languages (i.e., with unoptimized code).

Validating debug information for optimized code raises some

unique challenges: (1) many breakpoints cannot be reached

by debuggers due to code optimization; and (2) inspecting

some arbitrary variables such as uninitialized variables in-

troduces undefined behaviors.

This paper presents the first generic framework for sys-

tematically testing debug information with optimized code.

We introduce a novel concept called actionable program. An

actionable program P ⟨s ,v ⟩ contains a program location s and
a variablev to inspect. Our key insight is that in both the un-

optimized program P ⟨s ,v ⟩ and the optimized program P ′
⟨s ,v ⟩ ,

debuggers should be able to stop at the program location s
and inspect the value of the variablev without any undefined

behaviors. Our framework generates actionable programs
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and does systematic testing by comparing the debugger out-

put of P ′
⟨s ,v ⟩ and the actual value of v at line s in P ⟨s ,v ⟩ . We

have applied our framework to twomainstream optimizing C

compilers (i.e., GCC and LLVM). Our framework has led to 47

confirmed bug reports, 11 of which have already been fixed.

Moreover, in three days, our technique has found 2 confirmed

bugs in the Rust compiler. The results have demonstrated

the effectiveness and generality of our framework.
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1 Introduction
Debugging is an essential part of software development.

Compilers are typically available with companion source

code debuggers. To aid debugging, compilers generate debug
information together with the machine code [2]. For instance,

C compilers offer a flag “-g” to enable debug information. The

debug information establishes a mapping between source

code and machine code.

Debugging optimized code is a desirable feature [1, 10].

Modern software is compiled with compiler optimizations.

Debug information is extremely useful for diagnosing soft-

ware failures. For instance, to analyze a crash, developers

could immediately attach a debugger to the running opti-

mized program compiled with debug information. Therefore,

some Linux distributions
1
recommend adding the flag “-g

-O2” to customize software builds and provide better quality

assurance support. Also, many concerning issues such as per-

formance bugs only exhibit in optimized code, which makes

debugging with optimized code mandatory. Some software

products are shipped with debug information. For example,

1https://wiki.gentoo.org/wiki/Project:Quality_Assurance/Backtraces

https://doi.org/10.1145/3385412.3386020
https://doi.org/10.1145/3385412.3386020
https://doi.org/10.1145/3385412.3386020
https://wiki.gentoo.org/wiki/Project:Quality_Assurance/Backtraces
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1 char a,b;
2 int main(){
3 unsigned c;
4 --b;
5 c=2;
6 if(a)
7 b=0;
8 return 0;
9 }

(a) Program P .

1 char a,b;
2 int main(){
3 unsigned c;
4 --b;
5 c=2;
6 if(a) // c
7 b=0;
8 return 0;
9 }

(b) Actionable Program P⟨6,c⟩ .

1 char a,b;
2 int main(){
3 unsigned c;
4 --b;
5 opt_me_not(); // b
6 c=2;
7 if(a)
8 b=0;
9 return 0;
10 }

(c) Actionable Program P⟨5,b⟩ .

1 char a,b;
2 int main(){
3 unsigned c;
4 --b;
5 opt_me_not(); // c
6 c=2;
7 if(a)
8 b=0;
9 return 0;
10 }

(d) Non-actionable Program.

Figure 1. Illustrative examples of the actionable programs

transformation. The function opt_me_not() is defined in an-

other compilation unit. Compiled with GCC and Clang using

“-O3 -g”, the set of available lines is explicitly encoded in

the corresponding DWARF debug information. Note that in

program P , the breakpoint at line 6 can always be reached

in both GDB and LLDB.

the latest Mozilla Firefox on MacOS is built with the “-g -O3”

flag.
2
The Linux software produced by GNU autotools [7]

has the default flag “-g -O2” in the release builds.

Since the work of Hennessy [14], the problem of debug-

ging optimized code has been extensively studied in the

literature. Two decades ago, a debugger manual explicitly

warned users “(in order to) enable debugging, turn off all

optimizations.”[1, 34] After tremendous developments, de-

bugging optimized code has become a common practice and

generating debug information for optimized code is a mature

feature in production compilers [13]. For instance, the latest

Red Hat developer guide recommends the build flag “-g -O2”

with GCC for all developers targeting Red Hat Enterprise

Linux [26, Chapter 15.5]. Despite the considerable efforts,

little progress has been made to validate the debug informa-

tion generated by compilers. Do compilers always generate

correct debug information for optimized code?

This paper fills the gap and presents the first general frame-

work to validate debug information for optimized code. In

particular, we restrict the validation to testing the validity

of compiler-generated debug information. We focus on two

most fundamental tasks in debugging: setting a breakpoint

and printing the value of a variable. With these two opera-

tions, we consider the following problem: how to generate

2
TheWindows release of Mozilla Firefox is compiled with “-Z7 -O2” which
enables CodeView debug information in object files.

interesting input programs for testing debug information

associated with optimized code? A straightforward approach

is adopting existing program generation techniques for com-

piler testing [19, 35, 36]. Unfortunately, this is inadequate.

In compiler testing, each input program contains a fixed set

of output statements (e.g., print and return) and is executed

only once w.r.t. the program input. However, the act of de-

bugging is more interactive. Even for one program input,

users may inspect multiple program points with many vari-

ables in the input program. Formally, there are two unique

challenges [14] in debug information validation:

• Code Location Problem. Compiler optimization rear-

ranges instructions and eliminates statements. Many

program points in the source code could be optimized

out and may not even be available in the optimized

code. Setting breakpoints at those locations does not

necessarily stop the program execution in a debugger.

• Data Value Problem. Debuggers could literally inspect

any variable at a specific program point. Unfortunately,

printing an arbitrary variable may cause undefined

behaviors such as accessing an uninitialized variable or

an out-of-bound array element. The systematic testing

must inspect only appropriate variables.

To illustrate the challenges, we consider a concrete exam-

ple in Figure 1(a). It is a well-formed input program P for

compiler testing. However, we could not directly adopt P
for testing debug information. Due to the optimization, de-

buggers cannot stop at some lines in P . Moreover, suppose

a debugger manages to stop at line 4. Printing variable c

results in an undefined behavior since c is uninitialized at

that program point (data value problem).

To facilitate testing debug information for optimized code,

we introduce the actionable programs. Specifically, given a

well-formed program P , we transform it to an actionable

program P ⟨s ,v ⟩ where s denotes a program location andv de-

notes a variable in P . Let P ⟨s ,v ⟩ and P
′
⟨s ,v ⟩ be an unoptimized

program and its optimized counterpart, respectively. The

key insights behind the actionable program transformation

are: (1) the location s in the optimized program P ′
⟨s ,v ⟩ can

always be reached by a debugger; and (2) printing variable v
at location s in P ⟨s ,v ⟩ and P

′
⟨s ,v ⟩ does not yield any undefined

behaviors. In particular, to tackle the code-location problem,

if the location s has been optimized out, we insert a barrier
(i.e., an unoptimizable function) at s to guarantee that the

corresponding breakpoint always hits. To tackle the data

value problem, we perform dynamic analysis to ensure that

printing variable v at s is always well-formed, which means

it doesn’t introduce any undefined behaviors. We discuss

our dynamic analysis techniques in detail in Section 5. Fig-

ure 1(b) gives an actionable program P ⟨6,c ⟩ transformed from

the original program P in Figure 1(a). The debugger is able

to stop at line 6 and printing the variable c is well-formed.

Figure 1(c) also gives an actionable program P ⟨5,b ⟩ . Since the
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debugger cannot stop at line 5 in the original optimized code,

our transformation adds an external function opt_me_not()

at that line. Then, a debugger can stop at the breakpoint

at line 5 in the optimized code, and printing variable b is

also well-formed. However, the program in Figure 1(d) is a

non-actionable program since variable c is uninitialized even

though the whole program is well-formed.

To our knowledge, our work is the first practical effort

to test debug information for optimizing compilers. It is

a relatively unexplored area and debuggers have received

much less attention than other parts of the toolchain such

as compilers. Existing work in this direction focuses on test-

ing the interactive aspects of debuggers for dynamic lan-

guages [20]. It tests the functional correctness of the debug-

gers without taking the compiler optimization into consider-

ation. Our work provides a generic debugging information

testing framework for optimizing compilers. Specifically, we

leverage both the unoptimized version P ⟨s ,v ⟩ and the opti-

mized version P ′
⟨s ,v ⟩ of actionable programs. The runtime

value of v at location s in P ⟨s ,v ⟩ serves as the reference. We

compare the reference against the value of v at s retrieved
by a debugger in P ′

⟨s ,v ⟩ .

We have implemented the actionable program transforma-

tion for testing debug information generation in optimizing

compilers. Our evaluation based on two widely-used C com-

pilers (i.e., GCC and LLVM) yields promising results. Our

framework has led to 47 confirmed bug reports. The majority

of those bugs reveal that compilers generate wrong debug

information which causes debuggers to output wrong results

for optimized code. Moreover, many of our reported bugs

are latent which affect at least three recent releases of both

compilers. The open-source community appreciates our ini-

tial effort in improving the debugging support in optimizing

compilers. In particular, all of our reported bugs have been

confirmed and about 23% of them have already been fixed.

This paper makes the following contributions:

• We formulate the problem of actionable program gen-

eration to facilitate systematic debug information test-

ing for optimized code.

• We propose a practical realization of actionable pro-

gram transformation.

• We lead the initial effort to improve the correctness

of debugging support for optimizing compilers. Our

technique has found 47 confirmed bugs in mature C

compilers and 2 confirmed bugs in Rust compiler.

The remainder of this paper is structured as follows. Sec-

tion 2 motivates our work via two concrete examples, and

Section 3 gives the problem statement. We present our frame-

work in Section 4 and experimental results in Section 5. Sec-

tion 6 summarizes the lessons learned. Finally, Section 7

surveys related works, and Section 8 concludes.

DW_TAG_compile_unit
DW_AT_producer ("clang ver

7.0.1")
DW_AT_language (DW_LANG_C99)
DW_AT_name ("a.c")
DW_AT_stmt_list (0 x00000000)
DW_AT_comp_dir ("intro")
DW_AT_GNU_pubnames (true)
DW_AT_low_pc (0 x00400480)
DW_AT_high_pc (<offset -from -

lowpc >50)

DW_TAG_subprogram
DW_AT_low_pc (0 x00400480)
DW_AT_high_pc (<offset -from -

lowpc >50)
DW_AT_frame_base (DW_OP_reg6

RBP)
DW_AT_name ("main")
DW_AT_decl_file ("intro/a.c")
DW_AT_decl_line (2)
DW_AT_type (0 x00000060 "int")
DW_AT_external (true)

DW_TAG_variable
DW_AT_location (DW_OP_fbreg -8)
DW_AT_name ("a")
DW_AT_decl_file ("intro/a.c")
DW_AT_decl_line (1)
DW_AT_type (0 x00000060 "int")

DW_TAG_variable
DW_AT_location (DW_OP_fbreg

-12)
DW_AT_name ("b")
DW_AT_decl_file ("intro/a.c")
DW_AT_decl_line (1)
DW_AT_type (0 x00000060 "int")

Figure 2. DWARF debug information of the program in

Figure 1(a). The program is compiled with Clang-7 with “-g”.

We omit some information for brevity.

2 Background and Motivating Examples
To inspect the value of a variable in optimized code, a source

code debugger needs to query debug information generated

by a compiler. In practice, both debuggers and compilers,

like other software, can contain bugs. To improve debugging,

previous work focuses on testing the correctness of debug-

gers [20]. Our work offers a new perspective and focuses on

testing the debug information generated by optimizing com-

pilers. This section provides a gentle introduction to debug

information (Section 2.1) and motivates our work with two

real-world examples (Section 2.2).

2.1 Debug Information

To aid debugging activities, compilers emit debug informa-

tion together with the machine executables. Debug infor-

mation contains references to functions, variables, and line

numbers in the source code.When a debugging session starts,

a debugger interprets the debug information to relate the

running program to its source code. Almost all optimizing

compilers support the flag “-g” to generate the debug in-

formation in the operating system’s native format such as

STABS [23], PDB [24], and DWARF [12]. Some compilers

support specialized flags to further support its source code

debugger. For example, GCC has a “-ggdb” flag to generate

more precise information for GDB. DWARF is a popular de-

bug information format used by mainstream compilers and

debuggers. Unless otherwise stated, we always refer to the

DWARF format of debug information in latter sections.

Figure 2 gives the DWARF debug information of the pro-

gram in Figure 1(a). The DWARF information is organized in

a tree structure. Node “DW_TAG_compile_unit” contains meta

information about the compilation. It establishes the con-

nection between the source code file (a.c) and the addresses

(“0x400480” and offset 50) in the object file. It has a child

node of type “DW_TAG_subprogram” which denotes a function

(“main()”). Fields “DW_AT_low_pc” and “DW_AT_high_pc” repre-

sent, respectively, the beginning and end addresses of the

function in the object file. In this example, the addresses
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1 char a, b;
2 int main() {
3 int c = --a;
4 int l = -8L;
5 l = c;
6 c > (b = 0); // l
7 }

(a) Program P⟨6,l ⟩ .

$ clang -9 -g a.c -O2

$ lldb -trunk a.out

(lldb) b 6

Breakpoint 1: a.out at a.c:6:10.

(lldb) r

-> 6 c > (b = 0); // l
(lldb) p l

(int) $0 = -8

(b) Wrong output at “-g -O2”.

DW_TAG_variable
DW_AT_location (DW_OP_consts

-8, DW_OP_stack_value)
DW_AT_name (``l'')
DW_AT_decl_file (``...'')
DW_AT_decl_line (4)
DW_AT_type (0x008f ``int'')

Wrong DWARF info.

DW_TAG_variable
DW_AT_name (``l'')
DW_AT_decl_file (``...'')
DW_AT_decl_line (4)
DW_AT_type (0x008b ``int'')

DWARF info after bug fix.

(c) DWARF information on variable l.

Figure 3. Clang-9.0.0 generates wrong debug information

at “-g -O2”. The bug has been fixed. We use the latest devel-

opment version of LLDB in this example.

1 int a;
2 int main() {
3 int i;
4 for (; a < 10; a++)
5 i = 0;
6 for (; i < 6; i++)
7 ;
8 opt_me_not(); // i
9 }

(a) Program P⟨8,i⟩ .

$ gcc -8 a.c opt_me_not.c -g -O3

$ gdb a.out

(gdb) b 8

Breakpoint 1: file a.c, line 8.

(gdb) r

Breakpoint 1, main () at a.c:8

8 opt_me_not (); // i
(gdb) p i

$1 = 0

(b) Wrong output at “ -g -O3”.

DW_TAG_variable
DW_AT_name ("i")
DW_AT_decl_file ("...")
DW_AT_decl_line (3)
DW_AT_decl_column (0x07)
DW_AT_type (0x003d "int")
DW_AT_const_value (0x00)

Wrong DWARF info.

DW_TAG_variable
DW_AT_name ("i")
DW_AT_decl_file ("...")
DW_AT_decl_line (3)
DW_AT_decl_column (0x07)
DW_AT_type (0x003d "int")
DW_AT_location <loclist

at offset 0x00000002
with 1 entries follows >

DWARF info after bug fix.

(c) DWARF information on variable i.

Figure 4.GCC-8.3 generates wrong debug information at “-g

-O3”. Function opt_me_not() is defined in file opt_me_not.c.

The bug has been fixed in the latest development branch. We

use the latest development version of GDB in this example.

are the same as those in node “DW_TAG_compile_unit” be-

cause the compilation unit contains only one function. The

node “DW_TAG_variable” shows variable information such as

variable name, line number and type. Field “DW_AT_location”

contains the variable location “DW_OP_fbreg - x” where

“DW_OP_fbreg” denotes the frame’s base address. To summa-

rize, the DWARF debug information provides a mapping to

bridge the source code and the machine executable.

2.2 Wrong Debug Information for Optimized Code

Mainstream optimizing compilers (e.g., GCC and LLVM) sup-

port debugging with optimized code. Compiler optimizations

not only affect the program itself but also impact the debug

information generation. Even if compilers generate the cor-

rect optimized code, they may produce wrong debug infor-

mation with it. We motivate our work with two concrete

examples using the stable releases of GCC and LLVM, re-

spectively. To read the debug information with the optimized

code, we use GDB and LLDB, respectively.

LLVM Bug 43893. Figure 3 triggers an LLVM bug where

the compiler generates wrong debug information at “-g -

O2”.
3
This bug affects the latest Clang-9 release. It has been

fixed in the development version of Clang.

The expected value of variable l at line 6 should be −1.

However, compiled with “-g -O2”, LLDB outputs an incorrect

value −8 as shown in Figure 3(b). The bug is the result of the

InstCombine pass in LLVM dropping an unused variable but

not correctly marking the debug information associated to

the variable as unavailable. Thus, the DWARF info contains

the result of the assignment instead of showing that it has

been optimized out.

GCC Bug 89463. Figure 4 gives a GCC bug where the

compiler fails to update the debug information when opti-

mizing the code.
4
This bug was introduced in GCC version

7 release and affects the recent stable version of GCC-8.3. It

has been fixed in the development version.

The expected value of variable i at line 8 in Figure 4(a) is

6. However, compiled with “-g -O3”, the value of i at line

8 becomes 0 in GDB (Figure 4(b)). The bug was introduced

by the dead code elimination optimization. When removing

the loop body at line 6 in Figure 4(a), it does not clean the

degenerated phi nodes in the intermediate representation.

Those phi nodes prevents updating the debug information.

Figure 4(c) illustrates the debug information of variable i.

The old version of GCC fails to update variable i. Therefore,

it remains as a constant. The latest version of GCC correctly

clean the phi node and optimizes out the variable.

It is interesting to note that the wrong variable informa-

tion in both examples is only observable in a debugger. GCC

and LLVM generate the correct optimized machine executa-

bles (i.e., we can print the correct runtime values by replacing

function opt_me_not() with a printf() function). It demon-

strates that the state-of-the-art optimizing compilers may

generate wrong debug information for optimized code. With-

out our actionable program transformation, traditional pro-

gram generation techniques could not detect the issue in

the second example since the entire function body will be

optimized out (i.e., code location problem) and the value of

variable i at a different location may be uninitialized (i.e.,
data value program).

3https://bugs.llvm.org/show_bug.cgi?id=43893.
4https://gcc.gnu.org/bugzilla/show_bug.cgi?id=89463.

https://bugs.llvm.org/show_bug.cgi?id=43893
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=89463
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3 Problem Formulation
We introduce a systematic testing framework for validat-

ing debug information. This section formalizes the testing

problem and our actionable program transformation.

3.1 Testing for Debug Information Validation

As discussed in Section 2.1, the debug information establishes

the connection between the executable program P and the

original source code. To interpret the debug information, we

leverage debuggers in our work. In particular, a debugger

DBG allows a programmer to observe the program execution.

It takes as inputs a target program and an action sequence:

• Target Program P . It is the main subject in debugging

sessions. Typically, developers use a debugger to in-

spect runtime properties in P . The executable P must

be compiledwith debugging support enabled (e.g., with
flag “-g” in most compilers).

• Action SequenceA. It defines the debugging activity in
debugging sessions. Specifically, the action sequence

contains the debugger commands to inspect the pro-

gram P . For instance, common actions include setting

a breakpoint, doing a single step-in execution, and

printing variables.

In practice, popular debuggers such as GDB and LLDB

support a rich set of debugging actions.
5
Our work focuses

on the most fundamental debugging operations: Setting a

break point s in P and printing the value of variablev at s . We

thus define a minimal value-printing sequence A ⟨s ,v ⟩ where
A ⟨s ,v ⟩ represents “break(s) → run → print(v) → quit”.
Therefore, the debugger DBG(P,A ⟨s ,v ⟩) outputs a number

(i.e., the value of v) after completing the debugging session.

Example 3.1. Consider the program P in Figure 1(a). Sup-

pose we want to inspect the value of variable a at line 5. In

unoptimized code, we can set a breakpoint at line 5 and print

variable a. Therefore, we use the value-printing sequence

A ⟨5,a ⟩ = break(5) → run→ print(a) → quit. The debugger
should output that a’s value is 0, i.e., DBG(P,A ⟨5,a ⟩) = 0.

Our goal is to systematically test debug information with

optimized code P ′. Hence, we need to compare the debugger

output DBG(P ′,A ⟨s ,v ⟩) with a reference. To obtain the refer-

ence value, we insert a print statement to print the value of

v at s in the source code, then compile and run the program

P without optimization. We use PRINT (P, s,v) to denote the

printed reference value.

Finally, the correct output ofDBG(P ′,A ⟨s ,v ⟩) should be the
same as PRINT (P, s,v). Let P be an unoptimized program and

P ′ an optimized program generated from the same source

code. Given a value-printing sequence A ⟨s ,v ⟩ , we have the
following definition on correctness.

Definition 3.2 (Correctness). The debug information for op-

timized code P ′ is correct iffDBG(P ′,A ⟨s ,v ⟩) ≡ PRINT (P, s,v).
5https://lldb.llvm.org/lldb-gdb.html lists some common commands.

Note that our work focuses on identifying incorrect debug-
ger outputs. In the presence of code optimization, sometimes

it is better to discard the debug information, in which case

the debugger will simply indicate that a variable has been

optimized out. Intuitively, discarding too much debug in-

formation renders an unuseful debugger implementation.

It is indeed a quality-of-implementation issue based on the

DWARF standard [9, Chapter 1.3.12]. Testing the complete-
ness is orthogonal to our focus on testing the correctness. We

believe that developers will generally only delete debug in-

formation when it is impossible to provide any reliable debug

information. In Section 5.3, we explicitly give an example

where developers fixed the bug via removing debug infor-

mation, and we also explain why it is a reasonable choice.

3.2 Problem Statement

The core problem in testing debug information is how to

generate suitable input programs. Compiler optimizations

present unique challenges in the context of debug informa-

tion validation. Specifically, the testing programs used in

compiler testing cannot be directly adopted due to the code

location and data value problems discussed in Section 1. Re-

call that to debug a program P , a debugger also needs a

action sequence A ⟨s ,v ⟩ . We thus propose the actionable pro-

gram transformation to support debugging with the action

sequence A ⟨s ,v ⟩ in program P .

Definition 3.3 (Actionable Program). For a specific opti-

mization process, an actionable program P ⟨s ,v ⟩ contains a
program location s and a variable v , such that both in the

case of unoptimized program and optimized program, the de-

bugger is able to stop at s , and printing v at s is well-defined.

A debugger can always apply the value-printing sequence

A ⟨s ,v ⟩ on actionable programs P ⟨s ,v ⟩ and their optimized

counterparts P ′
⟨s ,v ⟩ . Therefore, we could leverage actionable

programs for the subsequent testing process. To sum up, we

consider the following technical problem in our paper.

Given a program P , generate a set of actionable pro-

grams P for the subsequent systematic testing process.

The size of set P corresponds to the executed statements

and well-defined variables in program P . Let si denote the
program location in P and vi the number of well-defined

variables at each location. We have |P | =
∑

i ∈I sivi , where I
denotes the set of executed lines.

4 Approach
This section presents the actionable program generation and

the systematic testing algorithm. Our approach generates

a set P of actionable programs based on a given program

input program P . The input programs arewell-formed, closed

programs (i.e., they do not take inputs) which is standard in

compiler testing [19, 35].

https://lldb.llvm.org/lldb-gdb.html
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Section 4.1 describes a pre-processing process. Section 4.2

tackles the data value problem. Section 4.3 proposes amethod

to address the code location problem. Section 4.4 provides

the actionable program generation algorithm and describes

the overall framework to test debug information.

4.1 Pre-Processing

The goal of the pre-processing is to build necessary data

structures used in our main algorithm. Given a well-formed

test program P , we generate the line coverage information S.

For each covered line location s , we build a setVs consisting

of all in-scope variables in P at location s .
To collect the line coverage information, we instrument

the program and perform a dynamic analysis. This coverage

analysis is supported by compilers and popular program

profilers. According to the line coverage information, we

build a set S such that every element in S is a line covered in

the program P . To construct the variable setVs , we traverse

the abstract syntax tree (AST) of program P . For each line

location s , we collect all global variables and local variables

in the scope based on the location s on the AST. The coverage
information setS and line augmentation (section 4.3) address

the code location problem. Finally, our algorithm utilizes the

variable setsVs to generate actionable programs.

4.2 Shadow Validation

The naïve approach to generate all actionable programs for

a single program location s is to enumerate all available

variables at s . However, inspecting arbitrary variables at a

specific program point can introduce undefined behaviors

(data value problem). We propose a shadow validation tech-

nique to address the data value problem. Specifically, given

a well-formed test program P , a line location s and a vari-

ablev , the shadow validation determines whether inspecting

variable v at location s is well-formed.

The basic idea of shadow validation is to depict the value-

printing operation on program P in the debugging session

as a value-printing statement in a modified program P1. P1
is almost identical to P except for the print statement. We

say that P1 is the shadow program of P . Therefore, if P1 is a
well-formed program, the value-printing operation on pro-

gram P is well-formed as well. Specifically, at the location s
in program P , we insert a new print statement “print(v)” to

produce P1. We instrument the shadow program P1 and per-

form dynamic analysis to detect whether P1 yields undefined
behaviors. Based on the dynamic analysis, the shadow valida-

tion procedure determines whether inspecting the variable

v at location s in P is well-formed. We give an example to

illustrate the shadow program construction.

Example 4.1. Consider the well-formed program P in Fig-

ure 1(a). Suppose we would like to print the value of variable

c at the beginning of line 5. Figure 5(a) presents the con-

structed shadow program. The program is in C, and thus

1 char a,b;
2 int main(){
3 unsigned c;
4 --b;
5 printf("%d", c);
6 c=2;
7 if(a)
8 b=0;
9 return 0;
10 }

(a) Shadow program P1.

1 char a,b;
2 int main(){
3 unsigned c;
4 --b;
5 opt_me_not(); // b
6 c=2;
7 if(a)
8 b=0;
9 return 0;
10 }

(b) Result program P2.

Figure 5. Shadow validation and line augmentation.

we use printf() as the print statement. The shadow pro-

gram appends the print statement for variable c before line

5. Note that the shadow program P1 involves printing an

uninitialized variable c. Therefore, the dynamic analysis on

the shadow program P1 detects the error and rejects P1, i.e.,
P1 is a non-actionable program.

4.3 Line Augmentation

Testing debug information requires debuggers to stop at

the desired locations. In the pre-processing step, we have

collected the line coverage informationS, but setting a break-

point at a covered line s ∈ S does not guarantee that debug-

gers can stop at s in the presence of compiler optimizations.

To tackle this problem, we consider two cases.

First, if the debugger is able to stop at line s , we can just add
the meta information of the variable v to the corresponding

line as a comment. The problem is to figure out all lines

that the debugger is able to stop at. A naïve approach is to

try all lines and see whether the debugger is able to stop or

not, but that is time-consuming. Instead, we leverage the line

number table in the DWARF information, which contains the

mapping between the source code and the memory addresses

in the executable program. DWARF compresses this data

by encoding it as a sequence of instructions called a line

number program, which is interpreted by a simple finite

state machine to recreate the complete line number table [12].

Thus, we can use this information to find out lines that the

debugger is able to stop at. Although we are testing the

DWARF information itself, our main concern is the variable

values in the DWARF information, and we assume that the

line number information is correct.

Second, if the debugger cannot stop at line s , we propose
the line augmentation technique to solve this code location

problem. Given a well-formed program P as well as a line s
and the specified variablev , the line augmentation procedure

produces amodified program P2. Under the condition that the
line s is executed in P , the modified program P2 guarantees
that debuggers can stop at line s in the optimized machine

executable. To achieve this, the line augmentation procedure

inserts an unoptimizable function call (i.e., opt_me_not()) be-
fore line s . In addition, it also appends variable information
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Procedure ActionableProgramGeneration(P ).

Input :A well-formed test program P ;
Output :a set of programs P.

1 Run pre-processing on test program P

2 Let S be the set of covered lines in P

3 P ← �

4 foreach s ∈ S do
5 LetVs be the set of all in-scope variables at line s in P

6 foreach v ∈ Vs do
7 ret ← ShadowValidation(P, s,v)

8 if ret is not null then
9 if s has not been optimized out then
10 P ′ ← P and the meta information

indicating s and v
11 else
12 P ′ ← LineAugmentation(P, s,v)

13 P ← P ∪ {P ′}

14 return P

onv as meta information such as comments. This meta infor-

mation specifies which variable to inspect for debuggers. An

unoptimizable function creates a barrier at the location for

compiler optimization. Debuggers can stop at the barrier in

the optimized program which is exactly our desired location.

To create an unoptimizable function, we prevent compil-

ers from performing interprocedural optimization by limit-

ing the knowledge of the function to compilers. There are

both static and dynamic ways to achieve this goal. For in-

stance, we can put the implementation of opt_me_not() into

another compilation unit, and link opt_me_not() with the

program P statically. We can also build opt_me_not() in a

shared library such that it can only be linked dynamically.

Therefore, compilers have no knowledge about opt_me_not()

when processing P and the function becomes unoptimizable.

We provide an example to illustrate line augmentation.

Example 4.2. Consider the program P in Figure 1(a). We

perform line augmentation for line 5 with variable b. We

insert an opt_me_not() function before line 5 and produce an

new program P2. Function opt_me_not() is an external func-

tion defined in another compilation unit. Compilers have no

knowledge about opt_me_not() when optimizing program

P2, and thus cannot eliminate the function call. We also add

extra meta information in a comment to specify that de-

buggers can inspect variable b. Figure 5(b) gives the result

program P2 after line augmentation.

4.4 Main Algorithm

In this section, we describe our main algorithms for action-

able program generation and systematic testing.

Actionable Program Generation. The actionable pro-

gram generation procedure creates a set P of actionable

Algorithm 1: Systematic testing algorithm.

Input :A well-formed test program Pw ;

1 P ← ActionableProgramGeneration(Pw )

2 foreach P ⟨s ,v ⟩ ∈ P do
3 A ⟨s ,v ⟩ ← ExtractActions(P ⟨s ,v ⟩)

4 P ′ ← compile P ⟨s ,v ⟩ with optimization and “-g”

5 if DBG(P ′,A⟨s,v⟩) is not null and
DBG(P ′,A⟨s,v⟩) , PRINT (P, s, v) then

6 Report a bug with program P ⟨s ,v ⟩ , action A ⟨s ,v ⟩
and the used optimization flag

programs from a well-formed test program P . Procedure Ac-
tionableProgramGeneration describes the process.

• Actionable program candidate enumeration. The goal
of this step is to enumerate all possible candidate pairs

(s,v) for actionable program generation. We utilize

the coverage information S and variable setsVs from

the pre-processing step. Lines 4-6 enumerate all pos-

sible covered lines s ∈ S paired with a variable in

its corresponding in-scope variable setVs . Each pair

is a candidate choice to form an actionable program.

Later steps decide whether the candidate actionable

programs formed from the pairs conform to our ac-

tionable program criterion.

• Shadow validation. For each choice of pair (s,v), we
first perform the shadow validation in line 7. If printing

variable v at program point s in a debugging session

involves any undefined behaviors, the shadow valida-

tion procedure returns a null value. Otherwise, the

pair passes the shadow validation.

• Line augmentation. If the previous shadow validation

procedure returns a non-null value, we consider two

cases. If the line s has not been optimized out accord-

ing to the DWARF line number table, we just need

to add the meta information of the variable v to the

line s in the source code as a comment. Otherwise, we

perform the line augmentation procedure in line 12.

The modified program returned from the line augmen-

tation procedure is a proper actionable program P ⟨s ,v ⟩ .
We add the new generated actionable program to our

result set P in line 13.

Here we provide a concrete example to illustrate the process

of actionable program generation.

Example 4.3. Consider the program in Figure 1(a). To gen-

erate actionable programs, there are many candidate pairs

of line location s and variable v . We present two candidates

described in Figure 1(c) and 1(d). The first program repre-

sents the pair of the location line 5 and variable b. Because

inserting a print statement for variable b in the program is

well-formed, the shadow validation returns a non-null value

(line 7). Because line 5 is optimized out, line augmentation en-

codes the meta information and generates a new program P ′
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(line 9-10). Example 4.2 further describes the line augmenta-

tion. Figure 1(c) gives the resulting actionable program. The

other program we present in Figure 1(d) is not an actionable

program. It represents the pair of line location 5 and variable

c. As shown in Example 4.1, the shadow program involves

printing uninitialized variable c, so the shadow validation re-

turns a null value. Procedure ActionableProgramGeneration

discards this candidate program (line 8).

Systematic Testing. Algorithm 1 describes our testing

framework. In line 1, we collect all the actionable programs

generated from a well-formed test program Pw . For each
actionable program, we extract the meta information and

encode it as the corresponding debugger actions (line 3). If

the line s has not been optimized out, the meta information

includes the variable name in the comment in the corre-

sponding line. Otherwise, the meta information includes the

location of the opt_me_not() function call, and the variable

name in the comment. According to the information, we can

generate corresponding debugger actions including break-

point setup and variable inspection. After compiling the pro-

gram in optimized (P ′) version (line 4), we feed the actions to

the debugger to inspect the variable v at the line s , and com-

pare the output with the reference value PRINT (P, s,v). The
value PRINT (P, s,v) is obtained by inserting print statements

to the source code, compiling it without optimization, and

running it. We accept that debuggers can report the value of

the variable that has been optimized out in P ′. In this case,

we regard the debugger returns a null value. If debugger re-

turns a non-null value for program P ′, we compare it with

the reference value (line 5). The discrepancy between values

in PRINT (P, s,v) and DBG(P ′,A⟨s,v⟩) may indicate a bug in

compiler generated debug information (line 6).

5 Experiments
We have applied our framework to two mainstream optimiz-

ing C compilers (i.e., GCC and LLVM). We have also been

extensively experimenting with our technique and reporting

bugs to the open source community.
6

We summarize some highlights from our experiments.

• Our framework is extremely effective, and it has led

to 47 confirmed bug reports in GCC and LLVM. These

bugs have been actively addressed by developers. De-

velopers have already fixed 11 out of 47 reported bugs.

• Despite three decades of research and development

in debugging optimized code, there is plenty of room

to improve the debug information generation in pro-

duction optimizing C compilers. The bugs discovered

in our experimental study affect all major releases of

GCC and LLVM at all optimization levels. Some issues

are latent. For instance, one of the GCC bugs affects

GCC-4.4 which was released about nine years ago.

6
Project website: https://www.cc.gatech.edu/~qrzhang/projects/debug/
debug.html.

break 5

run

print a

kill

quit

(a) Action script.

$ gcc -O2 -g a.c opt_me_not.c

$ gdb -x cmds -batch a.out

Breakpoint 1 at 0x4f4: file a.c, line 5.

Breakpoint 1, main () at a.c:5

5 opt_me_not (); // a
$1 = 1

Kill the program being debugged? (y or n)

(b) GDB output.

Figure 6. Debugging with an action script (i.e., cmds) on an

actionable program P ⟨5,a ⟩ (i.e., a.c). In this example, GDB

reads a pre-defined value-printing sequences A ⟨5,a ⟩ in Fig-

ure 6(a) and outputs “a = 1” in Figure 6(b).

• Our initial effort has been well received by the LLVM,

LLDB, GCC, andGDB developers aswell as theDWARF

standards committee. One LLVM developer mentions,

“Thanks for the PR, this was likely a serious quality-

of-debug-experience issue for anyone hit by it.”
7
One

DWARF committee member comments,

[Your bug reports] seem clear and reasonably com-

plete. Generating correct debug info for optimized

code is important.

5.1 Experimental Setup

Our primary focus is testing the debug information for opti-

mized C code, so we choose two most popular C compilers

(i.e., GCC and LLVM). Our experiments were conducted on

the latest development versions of both compilers. We use

the compiler flag “-g” to generate the DWARF debug informa-

tion. To produce optimized code, we use optimization flags

“-O1”, “-O2”, and “-O3” in both compilers. GCC has an addi-

tional flag “-Og” which provides better debugging support in

optimized code. We have tested that flag as well.

To interpret the debug information, we utilize the corre-

sponding source code debuggers, i.e., GDB for GCC and LLDB

for LLVM. Both GDB and LLDB used in our experiments are

of the latest development versions. All experiments were

conducted on a 64-bit machine with an Xeon Silver 4110 pro-

cessor and 16 GB memory, running Ubuntu 18.04. By default,

the two compilers generate 64-bit executables.

Implementation. We describe the components in our

framework as follows.

• We implemented the source code transformation de-

scribed in ShadowValidation (Section 4.2) with Clang’s

Libtooling library [27]. Given a location s and a vari-

able v , our tool automatically translates the input pro-

gram P and constructs the corresponding shadow pro-

gram. The dynamic analysis is crucial in our testing

process. To avoid undefined behaviors, we leverage

both CompCert’s reference interpreter [21] andClang’s

undefined behavior sanitizer [28]. CompCert is a veri-

fied compiler and its interpreter has been widely-used

7https://bugs.llvm.org/show_bug.cgi?id=39896.

https://www.cc.gatech.edu/~qrzhang/projects/debug/debug.html
https://www.cc.gatech.edu/~qrzhang/projects/debug/debug.html
https://bugs.llvm.org/show_bug.cgi?id=39896
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in compiler testing to detect undefined behaviors in in-

put programs [19, 36]. Clang’s sanitizer offers runtime

monitoring to detect undefined behaviors. It has been

used not only in compiler testing [19, 36] but also in

other domains such as software debloating [15].

• We implemented the Line Augmentation (Section 4.3)

using Clang’s Libtooling as well. In particular, we lever-

age Clang’s RecursiveAstVisitor to traverse the pro-

gram AST and build the data structures of the avail-

able variables in each scope. We describe the body of

opt_me_not() in an external file and link it statically

with the testing program P . In practice, this approach

is usually sufficient to prevent compiler from optimiz-

ing out the call to function opt_me_not() in P . We can

also insert “__asm__ volatile ("" : : : "memory");”

in function opt_me_not() to further prevent any opti-

mizations in C compilers.

• The systematic testing algorithm is implemented using

BASH scripts. Both GDB and LLDB provide the fea-

ture to read the action commands from a pre-defined

file. Therefore, rather than invoking the debuggers in-

teractively, we pass the file that contains our action

sequence to the debuggers. If the debugger can stop

at one line multiple times, we only consider the first

stop. Figure 6 gives an example action sequence file to

inspect the program P ⟨5,a ⟩ . The program is compiled

with “-g -O2” and GDB outputs “a = 1”, i.e., we have
GDB(P ′

⟨5,a ⟩,A ⟨5,a ⟩) = 1.

Input Programs. Our actionable program transforma-

tion takes as inputs some well-formed seed programs P . We

pick C testing programs from the unit test-suites of many

open-source projects such as GCC, LLVM, CompCert [21],

Frama-C [29], and the Rose compiler [30]. Those programs

are usually well-formed and have been widely-used in com-

piler testing work [19, 36]. We also use Csmith [35] – a

random C program generator – to produce input programs.

Csmith adopts a set of heuristics to avoid generating test

programs with undefined behaviors. Furthermore, we check

all input programs with CompCert’s reference interpreter

and Clang’s sanitizer to make sure that they are well-formed.

Test Case Reduction. In compiler testing, it is important

to reduce test cases before reporting. In particular, test case

reduction constructs a small input program that triggers the

same compiler bug. Small and simplified test cases ultimately

help developers locate the root causes. In our work, we uti-

lize C-reduce [25] for test case reduction. To preserve the

well-formedness of the test programs, we adopt the dynamic

analysis described in our implementation. The reduction

process is fully automated. For each reduced test case, we

manually inspect the program before reporting. Our reduc-

tion process is quite effective and we haven’t reported any

ill-formed test cases at the time of writing.

Table 1. Overview of bugs reported for trunk versions of

GCC and Clang.

Compiler

Summary

Reported Fixed Duplicate Invalid

GCC 21 4 3 2

Clang 26 7 0 1

Compiler

Classification

Crash Wrong Output

GCC 0 21

Clang 3 23

6.X 7.X 8.X 9.XTrunk

0

10

20

30

8 9

15

4

21

(a) Affected GCC versions.

5.X 6.X 7.X 8.X 9.XTrunk

0

10

20

30
21

23 22

7 6

26

(b) Affected LLVM versions.

Figure 7. Summary of compiler versions that generate

wrong debug information.

5.2 Quantitative Results

Overall Results. Table 1 summarizes all bugs we have

found. In particular, we have reported 47 bugs to both GCC

and LLVM developers, and we classify them into the follow-

ing two types.

• Crash. The debugger crashes when applying the value-

printing sequence to the input program. Typically, the

crash is due to some assertion failures. We haven’t

encountered any crash related to segmentation fault.

• Wrong Output. The debugger successfully performs

the value-printing tasks on optimized test program

P ′ and exits normally. However, the value is different

from the ground truth derived from the unoptimized

counterpart P , i.e., DBG(P ′,A ⟨s ,v ⟩) , PRINT (P, s,v).
Note that it is an expected behavior for some variables

in an optimized program P ′ to be optimized out.

From Table 1, we can see that all GCC bugs and most

LLVM bugs are related to generating wrong debug informa-

tion. In practice, wrong debug information directly manifests

in the debugging process when a debugger inspects variable

values. Our testing exposes three crashes in the LLDB de-

bugger when parsing DWARF information. All of our bug

reports have been confirmed by the developers. The bug

counts reflect our recent efforts in testing debug information.

Developers have fixed about 23% of the reported bugs. It

shows a strong community interest in improving debugging

support in optimizing compilers.

Effectiveness of Line Augmentation. Line augmenta-

tion inserts the barrier opt_me_not() to cause the compiler

to generate a line table entry where the debugger can place

a breakpoint. It can potentially increase the number of test
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-O1 -O2 -O3 -Og
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9
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(a)

Affected GCC optimization levels.

-O1 -O2 -O3

0

10

20

30

21 21 21

(b)

Affected LLVM optimization levels.

Figure 8. Summary of compiler optimization levels gener-

ating wrong debug information. In LLVM, the “-Og” flag is

currently a wrapper of “-O1”.

cases that we can utilize. Among the 21 reported GCC bugs,

13 of them used line augmentation. Among the 26 reported

Clang bugs, 16 of them used line augmentation. Without this

technique, the debuggers may not be able to stop at those

lines, which means those bugs may not be found.

AffectedCompiler Versions. Figure 7 illustrates the com-

piler versions related to our reported bugs. We chose several

recent stable releases of both GCC and LLVM because they

represent the recent developments in production C compil-

ers. GCC-6 was released approximately four years ago and

LLVM-5 two and a half years ago. We also picked the trunk

versions of both compilers. From Figure 7, we can see that

all reported bugs affect the latest development version of the

two compilers. Many of them affect the latest stable releases.

Some bugs were reported before the release dates of GCC-

9.X, LLVM-8.X and LLVM-9.X, so they don’t affect those

stable releases, and this is the reason why the numbers of

these 3 versions are significantly smaller than the number of

previous versions. We also want to mention that some of the

issues have been present for a long time. Specifically, one

of the fixed GCC bugs affects GCC-4.4 which was released

about nine years ago.

AffectedOptimization Levels. Compilers generatewrong

debug information at all optimization levels as shown in Fig-

ure 8. In particular, Figure 8(a) and Figure 8(b) depict the

optimization levels in GCC and LLVM, respectively. GCC has

a designated flag “-Og” to improve debugging experience. Un-

fortunately, this flag still introduces many bugs in our GCC

experiment. From Figure 8(a), we can notice that the GCC

bugs are scattered in different levels. In LLVM, Figure 8(b)

suggests that almost all the bugs we found affect optimiza-

tion levels from “-O1” to “-O3”. This is related to the fact that

debug values are sometimes incorrectly updated by passes

and subsequent passes don’t touch them. Consequently, lat-

ter passes do not erase the result of the wrong optimization

(by marking the value as unavailable). The empirical result

shows that many bugs are, in fact, due to optimizations mis-

takenly not deleting obsolete debug info. It suggests that

newer versions of a compiler could occasionally miss the

correct debugging information from earlier versions.

Table 2. LLVM components exposing debugger bugs.

Bug Counts LLVM Component

6 DWARF Parser

5 SelectionDAG

2 SROA

2 InstCombine

2 EarlyCSE

2 MachineScheduler

1 LoopDeletion

1 SimplifyCFG

1 LSR

1 DeadStoreElimination

1 Inliner

1 CodegenPrepare

AffectedOptimizationPasses in LLVM LLVMprovides

a “-opt-bisect” flag to stop at some point in the optimiza-

tion pipeline, not applying subsequent transformations to

the input IR. Therefore, we could bisect the pass responsible

for updating the wrong debug information. Developers also

provided some information about the optimization passes.

We have identified the passes associated with all reported

LLVM bugs in Table 2. We can also observe that the DWARF

parser contains the most bugs we found. Among them, three

bugs are LLDB crashes as shown in Table 1. The remaining

three bugs cause LLDB to print a wrong value even though

the debug information is correct. This is because the parser

interprets DWARF incorrectly. In fact, the DWARF specifi-

cation is a little vague. A developer filed a ticket to clarify

some interpretation. The remaining bugs are spread across

many different optimization passes, We notice that SROA,

InstCombine, and SelectionDAG contain relatively more bugs,

probably due to their complexity.

5.3 Case Studies on Sample Bugs

We select and discuss six reported GCC and LLVM bugs.

Figure 9 describes the corresponding test programs with

bug classifications and status. Despite generating the wrong

debug information, compilers produce correct machine exe-

cutables for all six programs, i.e., we can add a printf state-

ment to observe the correct value at runtime.

Five out of these six bugs have been fixed by the devel-

opers. Our work focuses on identifying incorrect debugger

outputs according to Definition 3.2. For those wrong value

bugs, the developers fixed them either by providing the cor-

rect debug information (Figure 9(e)) or by noting that the

variables have been optimized out (Figures 9(b), 9(c), and 9(f)).

We believe developers will generally only delete debug infor-

mation when it is a good idea to do that. For example, in 9(f),

there is a function in LLVM called salvageDebugInfo which

tries to construct the debug information when an instruction

is eliminated. This function is a best-effort function, so it can-

not always succeed. Marking the value as optimized out is a

reasonable choice because the compiler cannot always make

an informative call on whether the value will be correct or
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1 static int a[6];
2 int b;
3 static void c () {
4 b = 5 ^ a[b & 5];
5 }
6 int main() {
7 int i, d = 0;
8 c();
9 i = 0;
10 for (; i < 8; i++) {
11 c();
12 if(d)printf("%d",i);//i
13 }
14 }

(a)

GCC wrong value bug 92387 (new).

1 volatile int a, b;
2 static int c;
3 int main() {
4 int i;
5 b = 0;
6 i = 0;
7 for (; i < 3; i++)
8 a = c;
9 i = 0;
10 for (; i < 5; i++)
11 ;
12 optimize_me_not();
13 }

(b)

GCC wrong value bug 89792 (fixed).

1 int a[7][8];
2 int main() {
3 int b, j;
4 b = 0;
5 for (; b < 7; b++) {
6 j = 0;
7 for (; j < 8; j++)
8 a[b][j] = 0;
9 }
10 optimize_me_not();
11 }

(c) GCC wrong value bug 90716 (fixed).

1 char a;
2 int main() {
3 int i;
4 int b[] = {7, 7, 7};
5 a = b[2];
6 i = 0;
7 for (; i < 5; i++)
8 ;
9 opt_me_not();
10 }

(d) LLDB crash bug 40827 (fixed).

1 char a, b;
2 int main() {
3 --b;
4 unsigned l_801 = 36901;
5 ++l_801;
6 if (a) // l_801
7 b = 0;
8 }

(e) LLVM wrong value bug 43957 (fixed).

1 char a = 25;
2 short b() {
3 short i = 23680;
4 i = a;
5 opt_me_not(); // i
6 return a;
7 }
8 int main() { b(); }

(f)

LLVM wrong value bug 39874 (fixed).

Figure 9. Sample test programs that trigger debug informa-

tion bugs in LLDB, GCC and LLVM. All wrong value bugs

can only be observed in debuggers. The binary is compiled

with “-g” and optimization flags.

not. Our work does not focus on testing the completeness of
debug information, i.e., if the debugger displays a variable as
“optimized out”, could the variable still be in the optimized

executable? Identifying the “missing” debug information in

optimized code is an exciting future topic.

Figure 9(a). This example exposes a GCC bug that affects

GCC trunk. The bug manifests when the source is compiled

with “-O1”. This shows up as a wrong value printed for the

variable i. The correct value of i is 0 at line 12. However,

with “-g”, GDB prints “i = 1”.

Figure 9(b). This GCC bug manifests when the program

is compiled with “-O3”. It affects GCC-8 and GCC trunk,

and GCC-7 works fine. Printing the value of the variable i

breaking on line 12 yields the wrong value 0 instead of 5.

1 fn main() {
2 let mut counter = 0;
3 {
4 let mut tick = || counter += 1;
5 tick();
6 tick();
7 lib::opt_me_not();
8 }
9 assert_eq!(counter, 2);
10 }

(a) Program P⟨7,counter⟩ .

$ rustc --crate -type=lib opt_me_not.rs -g -C opt -level=1
$ rustc main.rs --extern lib=libopt_me_not.rlib -g -C opt

-level=1
$ rust -gdb ./main
(gdb) b main.rs:7
Breakpoint 1: file main.rs, line 7.
(gdb) r
Breakpoint 1, at main.rs:7
7 lib:: opt_me_not ();
(gdb) p counter
$1 = 0

(b) Wrong output at “-C opt-level=1”.

Figure 10. Rust compiler generates wrong debug informa-

tion with “opt-level=1”.

Figure 9(c). This GCC bug manifests when the program

is compiled with “-O2”. When the bug was reported, it was a

recent regression because it affected GCC trunk and GCC-8

worked fine. Printing the value of j breaking on line 10 yields

the wrong value 0 instead of 8. The developer confirmed that

loop-distribution performs manual removal of the old loop

body but it moves debug statements in bogus order.

Figure 9(d). This is an LLDB (debugger bug) which shows

up when building with “-O2”. This is a crash in the DWARF

parser when trying to parse DI (debug info) variables. It

causes an invalid memory read while trying to copy data

from the process being debugged. The bug does not repro-

duce when the source code is compiled with “-O0”. LLVM-3.8

and LLDB trunk are affected.

Figure 9(e). This example shows a Clang bug that shows

up when building the source with “-O3”. The correct value

of l_801 is 36902, but LLDB prints the wrong value 36901.

Clang trunk is affected.

Figure 9(f). This example shows a Clang bug that repro-

duces when the source code is compiled with “-O1”. Trying

to print the variable i at line 5 yields the wrong value 23680

(i.e., the previous assignment has been missed). This is due

to a bug in the EarlyCSE pass which performs a round of

deletion of trivially dead instructions but does not mark the

value as an unavailable DWARF expression. This bug affected

Clang-4 to Clang-7.

6 Discussion
This section summarizes the lessons learned from our efforts

on testing debug information for optimized code.
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6.1 Generality of Program Transformation

We have presented the design and implementation of the ac-

tionable program transformation for testing debug informa-

tion for C compilers, but our framework is general. We have

also applied our framework to the Rust compiler. In three

days, we have found two confirmed bugs in the Rust compiler.

Figure 10(a) gives one of the Rust bugs. In this actionable

program P ⟨7,counter ⟩ , tick is a closure to increment the integer

counter. Because the program calls tick twice, the expected

value of counter at line 7 is 2. The program eventually passes

the assertion at line 9. When the program is compiled with-

out optimization, the Rust debugger can report the value

correctly. However, when compiled at “opt-level=1” which

is equivalent to “-O1” in LLVM, the Rust debugger reports a

wrong value 0 shown in Figure 10(b).

To generalize our framework to Rust, our framework

needs to adjust the program instrumentation based on the

differences between the grammars. It is worth noting that

Rust compiler does not allow undefined behaviors in its safe

code section, and thus it can help detect undefined behaviors

for our shadow validation procedure. In the line augmenta-

tion procedure, we notice that the compilation unit for Rust

is crate.
8
We put the implementation of the opt_me_not()

function into another crate to guarantee that it is unopti-

mizable. We are unaware of any random program generator

for Rust, so we use only the programs from the official Rust

test-suite to generate actionable programs.

6.2 Debugger Correctness

Source code debugging relies on both compilers and debug-

gers. Debuggers read the debug information generated by

compilers and perform the actual debugging activity. Our cur-

rent work only focuses on testing the information generated

by compilers. Even with the correct debug information, a

debugger can produce wrong outputs. For instance, all three

LLDB crashes (Table 1) are associated the optimized code. In

these cases, Clang generates the correct debug information

because GDB behaves as expected. Validating debuggers for

optimized code is an interesting future direction. The recent

work by Lehmann and Pradel [20] is a promising technique

based on differential testing.

6.3 DWARF Specification

It is interesting to note that one of our reported LLVM bugs

eventually led to a ticket submitted to the DWARF standard

committee. Our LLVM bug report reveals that LLDB prints

incorrect value for some elements of an array which have

been optimized out.
9
The DWARF expression emitted for the

array contains “DW_OP_piece: 6”, which indicates that the

first 6 bytes of the array have an empty location and have to

be printed as such. The DWARF standard illustrates it via an

8https://doc.rust-lang.org/rust-by-example/crates.html
9https://bugs.llvm.org/show_bug.cgi?id=39869.

1 short a, c;
2 long b;
3 short fun1() { return c; }
4 char d() {
5 short l_30[4] = {1};
6 a = fun1();
7 l_30[3]++;
8 opt_me_not(); //break here.
9 return b;
10 }
11 int main() { d(); }

(a) Actionable Program P⟨8,l_30⟩ .

Begin End Expression

0x4004d1 0x4004dd (DW_OP_piece: 6; DW_OP_lit0; DW_OP_stack_value; DW_OP_piece:

2)

0x4004dd 0x4004e5 (DW_OP_piece: 6; DW_OP_lit0; DW_OP_plus_uconst: 1;

DW_OP_stack_value; DW_OP_piece: 2)

(b) DWARF expression related to array l_30.

Figure 11. LLDB bug 39869 related to an issue in the DWARF

standard. In the unoptimized code, LLDB prints “l_30 = ([0] =
1, [1] = 0, [2] = 0, [3] = 1)”. However, when compiled

with “-g -O1”, LLDB incorrectly prints “l_30 = ([0] = 0, [1]
= 0, [2] = 0, [3] = 1)”.

example. However, the main description of “DW_OP_piece” in

the DWARF standard caused the misunderstandings. There-

fore, LLDB has implemented it in an expected way and thus

outputs a wrong value. The developer who originally im-

plemented the support in LLDB submitted a comment to

the DWARF standard committee to clarify the “DW_OP_piece”

documentation for parts of values optimized out. Figure 11(a)

and 11(b) give our test program and the DWARF expression

that triggered the issue, respectively.

6.4 Avoiding Duplicate Bug Reports

In our testing process, we tried various techniques to avoid

reporting duplicates. For every bug, we build a signature

based on the affected compiler versions. Before reporting,

we compare the signature against all previous signatures to

avoid duplicates. Moreover, for all GCC bugs, we performed a

repository bisection to locate the culprit revision. For LLVM,

we leveraged the pass bisection feature to locate the culprit

pass. Based on Table 1, we can see that we have reported

three duplicate GCC bugs but every reported LLVM bug is

unique. Our findings suggest that the pass bisection is more

helpful to eliminate duplicates than repository bisection.

6.5 Threats to Validity

The Shadow Validation procedure (Section 4.2) is based on

dynamic analysis, which may not be perfect in practice. Com-

pCert supports only a subset of C. Clang’s sanitizer has a few

target- and OS-specific limitations described in its own doc-

umentation. In our experiments, we rarely encountered the

issue with undefined behaviors. Our experience suggests that

in practice, CompCert and Clang’s sanitizers are sufficient

to guarantee the well-formedness of actionable programs.

https://doc.rust-lang.org/rust-by-example/crates.html
https://bugs.llvm.org/show_bug.cgi?id=39869
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Moreover, the random input programs used in our work

are generated by Csmith [35]. Csmith has applied various

techniques to generate undefined-behavior-free C programs.

The Line Augmentation procedure (Section 4.3) inserts an

unoptimizable function call (i.e., opt_me_not()) for a location
that has already been optimized out. It may inevitably inhibit

some optimizations. However, without such a barrier, the

particular location could not be inspected by any debuggers

in the optimized code. For the non-optimized-out lines, we

obtain them by reading the line number table in the DWARF

information. There are two potential threats in this process.

First, we are making the assumption that the line number

information in the DWARF information is always correct,

but this may not be true. Second, we have observed that some

debuggers can stop at a line which is not in the DWARF line

number table. Intuitively, it is acceptable for debuggers to use

some other information from the executable binary to decide

additional lines to stop. It is an interesting future direction

to develop a sound and complete approach to determine all

stoppable lines in the executable binary.

7 Related Work
Debugging optimized code has been a long studied prob-

lem. Hennessy [14] proposes techniques to recover the val-

ues of valid variables in optimized code by reconstructing the

original assignments of variables. To avoid misleading devel-

opers when they debug optimized code, many frameworks

have been proposed to detect [1, 10, 33] and recover [18, 34]

variables that are assigned with different values from the un-

optimized version. Code location mapping techniques allow

programmers to set breakpoints at different line locations

[6]. However, this binary to source location mapping is often

fragile, sometimes inaccurate or misleading. Tice and Gra-

ham [31] propose a framework to create a slightly modified

and semantically equivalent version of the source code to

facilitate the mapping. In the work of Hölzle et al. [16], it

hides the optimization from users and presents information

users expect to see in an unoptimized program. Researchers

also propose ways to check discrepancies between the op-

timized and unoptimized programs to avoid debugging in

optimized code [17]. The work of Bastian et al. [3] describes

two techniques to perform validation and synthesis of the

DWARF stack unwinding tables, and their implementation

for the x86_64 architecture.

Debugger is a widely used developer tool. Various de-

buggers have been developed for different programming

languages [2]. To ensure the correctness of debuggers, their

semantics have been carefully defined [4]. Recently its au-

tomated testing has been studied by Lehmann and Pradel

[20]. They propose a new framework to generate feedback-

directed tests for differential testing [22] on debuggers. For

the same program, different behaviors between two equiva-

lent debuggers under same actions indicate bugs in at least

one debugger. The work of Tolksdorf et al. [32] presents

a metamorphic testing approach for debuggers. However,

those works address the testing of functional correctness

of debuggers themselves. Our main focus is testing debug

information fed to the debuggers for optimized code. To the

best of our knowledge, our paper is the first work toward

validating the debug information generated by compilers.

Automated Testing for compilers has been studied for

many years. A common approach for compiler testing is

random test generation. Csmith is currently the state-of-the-

art program generator for C compiler testing [8, 35]. Another

approach to test compilers is mutation based testing. The

work of Le et al. [19] proposes the equivalence modulo inputs

(EMI) technique for compiler testing. Testing tools adopting

EMI principlesmutate programs on unexecuted branches and

expect the same result as before. Other approaches include

enumerating all testing programs of a given template within

bounded size [36]. Recently, deep learning has also been

applied in program generation for compiler testing [11]. A

survey for compiler test case generators is provided by [5].

All of these techniques emphasize on generating programs

as inputs for compilers. Our work focuses on generating

breakpoints and valid variables for debuggers.

8 Conclusion

This paper has introduced the first testing framework for

debug information validation for optimized code. We have

presented a novel concept of actionable programs to facil-

itate the subsequent systematic testing process. We have

evaluated our framework on two well-known C compilers

and the Rust compiler. The results are extremely encourag-

ing. Our technique has led to 47 confirmed bug reports in

GCC and LLVM, 11 of which have already been fixed. Our

work has been well-received by the open-source community.

Generating correct debug information for optimized code

is inherently difficult. We hope our work motivates more

researchers to look into this important area.
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