
Scaling CFL-Reachability-Based

Alias Analysis:

Theory and Practice

ZHANG, Qirun

A Thesis Submitted in Partial Fulfilment

of the Requirements for the Degree of

Doctor of Philosophy

in

Computer Science and Engineering

The Chinese University of Hong Kong

September 2013

Thesis/Assessment Committee

Professor Yufei Tao (Chair)

Professor Michael Rung-Tsong Lyu (Thesis Supervisor)

Professor Lap Chi Lau (Committee Member)

Professor Zhendong Su (External Examiner)

Abstract of thesis entitled:

Scaling CFL-Reachability-Based Alias Analysis: Theory and Practice

Submitted by ZHANG, Qirun

for the degree of Doctor of Philosophy

at The Chinese University of Hong Kong in September 2013

Alias analysis is a fundamental static analysis problem which

aims at determining if two pointer variables can refer to the

same memory location. Alias analysis is usually a prerequisite

for many static analyses. The precision of alias analysis leaves a

great impact on many subsequent static analyses. Alias analysis

can be formulated as a context-free language (CFL) reachability

problem on edge-labeled bidirected graphs.

Solving all-pairs CFL-reachability is expensive. For a graph

with n nodes and m edges, the traditional dynamic program-

ming style algorithm exhibits an O(n3/ log n) time complexity.

It is also well-known that CFL-reachability-based alias analysis

solving all-pairs CFL-reachability does not scale in practice.

This thesis makes both theoretical and practical contributions

i

on scaling CFL-reachability-based alias analysis.

On the theoretical end, we present several fast algorithms for

solving all-pairs CFL-reachability for alias analysis. In partic-

ular, for alias analysis for Java, we present a new Dyck-CFL-

reachability algorithm with O(n + m log m) time complexity.

When the input graph is restricted to a tree, we present an O(n)

time Dyck-CFL-reachability algorithm. For alias analysis for C,

we present an efficient algorithm with O(n(m + M)) time com-

plexity, where M denotes the number of memory alias edges

which is very sparse with M = O(n) in practice. Moreover, if

the pointer usage in C is restricted to be well-typed, we present

an O(n(m+M̃)) time alias analysis algorithm, where M̃ denotes

the maximum memory alias edges on one layer.

On the practical end, we present the implementation of our

algorithms and conduct extensive experiments on real-world ap-

plications. In practice, our CFL-reachability-based alias anal-

ysis scales extremely well. The performance compared to the

state-of-the-art alias analyses for both Java and C indicates that

our algorithms achieve orders of magnitude speedup and con-

sume less memory. In particular, our CFL-reachability-based

alias analysis for C can analyze the latest Linux kernel in under

80 seconds.

ii

Acknowledgement

I would like to express my sincerest gratitude to many people

who assisted me in the research presented in this thesis. First of

all, I would like to thank my advisor Michael Lyu, for his guid-

ance during my study at CUHK. His support and encouragement

always showed me the light when I was low and in need of help.

Moreover, I appreciate the invaluable help and support from Hao

Yuan. His technical insight and advice led to many exciting re-

sults. Most importantly, this thesis would not have been possible

without the inspiration of his early Dyck-CFL-reachability re-

sult on bidirected trees. Furthermore, I count myself fortunate

to work with Zhendong Su at UC Davis, who has been more

than a mentor to me. His great vision and enthusiasm not only

prompted many stimulating discussions but also enlightened me

of exploring new ideas in programming language research.

My four years studying at CUHK has been a memorable ex-

perience of me. I enjoyed my staying with the teachers and stu-

iii

dents here. Among many others, I would like to thank Lap Chi

Lau and his students in all my endeavors, for the discussions on

graph reachability problems. The most gratitude goes to Wu-

jie Zheng, who has been helping me to establish both serious

scientific attitude and optimistic personality. Over the years,

I was very happy to share office with a few talented guys, Yu

Kang, Chao Zhou, Guang Ling, Chen Cheng, Shouyuan Chen,

Hongyi Zhang. Life would not have been nearly as enjoyable

without these fantastic officemates. When I was staying at UC

Davis, I also thank Linfeng Liu, Zhongxian Gu, Dara Hazeghi,

Vu le, Martin Velez, Ke Wang for many constructive discussions

on both life and research. In particular, my special appreciation

extends to Liang Xu and Fangqi Sun. Words can’t express how

much I appreciate your kindness and hospitality.

Last, but not least, I am deeply indebted to my parents and

grandparents, for their unwavering love of me, for helping me get

where I am today, and for their tireless support all through my

life. And of course, my heartfelt thanks and love must go to Yin

Lu, my wife, for her words and acts of encouragement during

my Ph.D. study. I consider myself the luckiest in the world to

have her in my life, who offers me both unconditional love and

tremendous support.

iv

To my family

v

Contents

Abstract i

Acknowledgement iii

1 Introduction 1

1.1 Alias Analysis . 3

1.1.1 Alias Analysis via CFL-Reachability . . . 4

1.1.2 Client Applications 5

1.2 Scalability Challenges 7

1.2.1 Improving Asymptotic Complexities 8

1.2.2 Boosting Practical Implementations 9

1.3 Thesis Contributions 9

1.4 Thesis Organization 12

2 Background 13

2.1 Pointer Analysis 13

2.1.1 Points-to Analysis 14

vi

2.1.2 Alias Analysis 15

2.1.3 Analysis Dimensions 16

2.1.4 Computability and Complexity 20

2.2 Traditional Approaches to Alias Analysis 21

2.2.1 Unification-based Analysis 23

2.2.2 Inclusion-based Analysis 24

2.3 CFL-Reachability 25

2.3.1 Traditional CFL-Reachability Algorithm . 27

2.3.2 Complexity 28

2.4 Alias Analysis via CFL-Reachability 29

3 Fast Dyck-CFL-Reachability Algorithms 31

3.1 Introduction . 31

3.2 Preliminaries . 34

3.2.1 Dyck-CFL-Reachability 34

3.2.2 Bidirected Dyck-CFL-Reachability 35

3.3 Dyck-CFL-Relation 37

3.3.1 An Equivalence Property 37

3.3.2 A Näıve Approach 40

3.4 Dyck-CFL-Reachability Algorithm on Bidirected

Trees . 44

3.4.1 The Stratified-Sets Representation . . 44

3.4.2 Main Algorithm 48

vii

3.5 Dyck-CFL-Reachability Algorithm on Bidirected

Graphs . 51

3.5.1 Basic Idea 52

3.5.2 Main Algorithm 58

3.5.3 Algorithm Correctness and Complexity Anal-

ysis . 63

3.6 Dyck-CFL-Reachability Algorithm 67

3.6.1 Basic Idea 68

3.6.2 Maintaining Transitive Closure 69

3.6.3 Matching Parentheses 76

3.6.4 Algorithm Correctness and Complexity Anal-

ysis . 81

4 Application: Scaling an Alias Analysis for Java 83

4.1 Demand-driven Alias Analysis for Java 84

4.1.1 Symbolic Points-to Graph 84

4.1.2 Context-Insensitive Alias Analysis 85

4.1.3 Applying Our Fast Algorithms 87

4.2 Empirical Evaluation 87

4.2.1 Experimental Setup 88

4.2.2 Time and Memory Consumption 89

4.2.3 Discussion 90

viii

5 Fast CFL-Reachability Algorithms 95

5.1 Introduction . 95

5.2 The Zheng-Rugina Alias Analysis Formulation . . 99

5.2.1 Pointer Expression Graphs 99

5.2.2 Memory Aliases and Value Aliases 101

5.2.3 Advantages of PEG 105

5.3 Alias Analysis Algorithm 107

5.3.1 Basic Idea 107

5.3.2 Propagating CFL-Reachability Summaries 113

5.3.3 Alias Analysis Algorithm 117

5.3.4 Saving a Logarithmic Factor 120

5.4 Well-Typed Alias Analysis Algorithm 123

5.4.1 Pre-Processing 124

5.4.2 Handling Bottom-Layer Variables 125

5.4.3 Main Algorithm: A Bottom-Up Approach 132

5.4.4 Algorithm Correctness and Complexity Anal-

ysis . 136

6 Application: Scaling an Alias Analysis for C 142

6.1 Experimental Setup 144

6.1.1 Time Consumption 146

6.1.2 Memory Consumption 148

6.1.3 Impact of CC Decomposition 149

ix

6.2 Performance of Subcubic CFL-Reachability-Based

Alias Analysis . 152

6.3 Discussions . 155

7 Related Work 159

7.1 CFL-Reachability 159

7.2 Alias Analysis . 161

7.3 Points-to Analysis 163

8 Conclusion 166

8.1 Thesis Summary 166

8.2 Future Work . 168

Bibliography 170

x

List of Figures

1.1 An example to illustrate buffer overflow. 5

1.2 An example to illustrate constant propagation. . . 7

2.1 An simple example illustrates the pointer usage

in C. 14

2.2 An example illustrates the flow-sensitivity of pointer

analysis. 17

2.3 An example illustrates the context-sensitivity of

pointer analysis. 18

2.4 An example illustrates the field-sensitivity of pointer

analysis. 19

2.5 Constraints for flow-insensitive unification-based

points-to analysis. 23

2.6 An example for unification-based and inclusion-

based pointer analysis. 24

2.7 Constraints for flow-insensitive inclusion-based points-

to analysis. 24

xi

3.1 Example graphs illustrating a directed graph and

its corresponding bidirected graph. 36

3.2 A running example for Dyck-CFL-reachability on

trees. 50

3.3 A Dyck-path example. 53

3.4 Steps in edge merging. 56

3.5 The illustration of the FDLL data structure. . . . 57

3.6 A running example for bidirected Dyck-CFL-reachability

on graphs. 61

3.7 Example graphs illustrating a directed graph and

its corresponding bidirected graph. 72

3.8 The reachability information after adding a new

edge (i, j). 72

3.9 Situations calling recursive procedure Meld(). . . . 73

3.10 Updating spanning trees. 75

4.1 An example of alias analysis with the SPG. 85

5.1 Core syntax of C pointers 100

5.2 CFL-reachability formulation of alias analysis for

C. 101

5.3 The recursive state machines. 102

xii

5.4 Two normal forms (CFL1 and CFL2) of the CFL

used in alias analysis for C. 103

5.5 An example of pointer analysis with the PEG. . . 105

5.6 The finite automata used in the chain case. 109

5.7 The positions of M in V 113

5.8 Phase one propagation. 115

5.9 Phase two propagation. 115

5.10 Adding summary edges in two phases. 118

5.11 An example PEG with bottom-layer variables and

corresponding reachability spanning trees. 128

5.12 Updating reachability information among bottom-

layer variables. 129

5.13 The updated reachability spanning trees after in-

serting (1, a, 4) in Figure 5.11. 132

xiii

List of Tables

1.1 Dyck-CFL-reachability algorithms for alias anal-

ysis for Java on SPG. 10

1.2 CFL-reachability algorithms for alias analysis for

C on PEG. 10

4.1 Benchmark programs. 91

4.2 Performance comparison: time in seconds and mem-

ory in MB. 92

5.1 Reachability information updated according toA-

and Ā-edges. 130

6.1 Benchmark applications. The SLOC is reported

by sloccount counting only C code. 143

6.2 The performance of the cubic and subcubic alias

analysis algorithms using the CFL1 formal form:

time in seconds and memory in MB. 146

xiv

6.3 Connected component information on the bench-

mark programs. 149

6.4 Procedures that contain the Max PEG in each

benchmark program. Only in Insight and Wine,

the Max PEGs are in the CCs belong to different

procedures regex byte regex compile and int21 DOSVM Int21Handler.

In the remaining bechmarks, the Max PEG is in

the CC of the same procedure. 150

6.5 The performance of various subcubic CFL-reachability-

based alias analyses: time in seconds and memory

in MB. 151

6.6 Number of original edges vs. number of alias edges.152

6.7 The graph densities for each algorithm. 152

xv

Chapter 1

Introduction

Software defects cause severe economic loss. According to a

well-publicized study by the National Institute of Standards and

Technology (NIST), software defects cost the U.S. economy an

estimated $59.5 billion annually [83]. A more recent study by

Cambridge University reports that the global economic cost of

software defects has risen to $312 billion annually [1]. A com-

mon rule of thumb in software defect reduction is to detect and

eliminate defects early when it is cheaper to do so [15].

Static analysis is the process of assessing source code without

executing the program, which can be applied at early stages be-

fore release [22]. Research has demonstrated that static analysis

tools can significantly reduce software defects and about 60%

of software faults could have been detected using static analysis

tools [87]. However, precise static analysis is quite difficult [49].

1

CHAPTER 1. INTRODUCTION 2

From a programming language prospective, the main source of

difficulties is due to the use of indirection [36]. The indirection

supported in various programming languages provides flexibility

to developers but poses significant difficulties to static analysis

tools. In particular, pointer dereferences in C and object refer-

ences in Java introduce data-flow indirection. Function pointers

in C, virtual method dispatch in Java and closures in functional

languages such as haskell introduce control-flow indirection.

Alias analysis is one kind of memory disambiguation meth-

ods, which aims at resolving the indirection [33]. It takes a

computer program as input and computes the pairs of pointer

variables that may refer to the same memory locations. There-

fore, the indirected access to a memory location can be resolved

by checking the alias pairs w.r.t. the pointer variable that repre-

sents the memory location. Alias analysis plays a pivotal role in

static analysis tools [33, 75], since alias information is usually a

prerequisite for most subsequent analyses. In the literature, alias

analysis has been formulated as a context-free language (CFL)

reachability problem on directed graphs [67, 80, 92, 97].

Unfortunately, traditional CFL-reachability-based alias anal-

ysis does not scale well in practice. For instance, traditional

CFL-reachability-based alias analysis takes more than 8 hours to

CHAPTER 1. INTRODUCTION 3

compute the all-pairs alias information on the current1 release of

Linux kernel, which is certainly far too time consuming. On the

other hand, modern software often undergoes significant changes

in the life cycle [53]. The code bases of modern software are get-

ting larger, with observed exponential growth patterns [28]. As

a result, the scalability of CFL-reachability-based alias analysis

draws much attention.

The main focus of this thesis is to develop new techniques to

scale CFL-reachability-based alias analysis for both C and Java

programs. From a theoretical perspective, we propose a set of

algorithms with improved time complexities for solving the all-

pairs CFL-reachability problem for alias analysis. From a prac-

tical perspective, we contributes several strategies to boost the

CFL-reachability implementations of alias analysis. Together,

these techniques could achieve orders of magnitude speedup and

consume less memory.

1.1 Alias Analysis

An alias occurs at some program point when two variables refer

to the same memory location. Given two pointers p and q, alias

analysis determines if they might point to the same memory loca-
1As of March 2013.

CHAPTER 1. INTRODUCTION 4

tions during program execution. Alias analysis is a fundamental

static analysis problem [40]. The aliasing information obtained

by an alias analysis is a prerequisite for many compiler optimiza-

tions and static analysis tools (e.g., software verifiers [27], data

race detectors [63], and static slicers [42]).

1.1.1 Alias Analysis via CFL-Reachability

The context-free language (CFL) reachability problem is a gen-

eralization of the traditional graph reachability problem [67,

93]. Many program analyses have been formulated as CFL-

reachability problems, such as interprocedural data flow analy-

sis [70], program slicing [69], shape analysis [66], type-based flow

analysis [62, 65], and pointer analysis [54, 78, 80, 90, 92, 97].

Two central ingredients of CFL-reachability formulation are a

context-free grammar which depicts the idea to solve the client

problem, and an edge-labeled directed graph which abstracts the

information from the input problem. The solution to the given

problem is represented as the CFL-reachability between nodes

in the edge-labeled directed graph.

Many state-of-the-art alias analyses [54, 78, 80, 90, 92, 97]

are formulated using CFL-reachability. In particular, alias anal-

ysis for Java has been formulated as a bidirected Dyck-CFL-

CHAPTER 1. INTRODUCTION 5

char *a, *b;

char c[10], d[11];

...

strcpy(a, b);

Figure 1.1: An example to illustrate buffer overflow.

reachability problem on Symbolic Points-to Graph (SPG) [90,

92]. In the SPG, the nodes represent symbolic memory loca-

tions of objects, and the edges with labels represent different

field accesses of an object. On the other hand, alias analysis for

C has also been formulated as a CFL-reachability problem on

Pointer Expression Graph (PEG) [97]. In the PEG, the nodes

represent pointer variables, and the labeled edges represent the

pointer dereferences and assignments. Two pointer variables are

aliases if and only if there is a path joining the two correspond-

ing nodes in the graph, and the string concatenating edge labels

from the path can be derived from the start symbol from the

given CFG.

1.1.2 Client Applications

The alias information is also quite useful for subsequent analysis.

We proceed to give two client applications of alias analysis.

CHAPTER 1. INTRODUCTION 6

Bug Detection

Static analysis tools could be applied to detect potential bugs

in programs. Let us consider buffer overflow in C programs as

an example. Buffer overflow occurs when the data to write is

larger than the buffer size. Buffer overflow vulnerability has

been a severe threat. According to the ICS-CERT Advisories [3]

in 2013, more than 16% vulnerabilities are primarily associated

with buffer overflow2.

Due to indirection in C language, a buffer can be accessed

via pointers. A static analysis tool may first consult pointer

aliasing information before going further to detect out-of-bound

buffer accesses. We give an illustrative example to introduce the

scenario. Let us consider the C code snippet in Figure 1.1. The

last line of the code snippet uses the unsafe strcpy() function to

copy the buffer pointed by b to the buffer pointed by a. If at

this point, b points d[11] and a points to c[10], a buffer overflow

vulnerability occurs. Without prior alias information of a and b,

it is not possible for a static analysis tool to detect the bug.

CHAPTER 1. INTRODUCTION 7

1: int a, b, *c;

2: a = 1;

3: c = &a;

4: *c = 2;

5: b = a;

Figure 1.2: An example to illustrate constant propagation.

Compiler Optimization

Constant propagation is a classical compiler optimization [6].

The goal of constant propagation is to collect the variables that

are constant at each program point and propagate the values

through the program paths.

Let us consider the code snippet in Figure 1.2. Due to the

assignment at line 3, *c and a are aliased. Without alias infor-

mation, the value of a is 1 at line 5. As a result, variable b gets

the constant 1. With the alias information, we know variable a is

indirectly accessed through *c at line 4. Consequently, variable b

gets the correct constant.

1.2 Scalability Challenges

The challenges of scaling CFL-reachability-based alias analysis

lie in both theory and practice.
2As of April 2013.

CHAPTER 1. INTRODUCTION 8

1.2.1 Improving Asymptotic Complexities

Traditional all-pairs CFL-reachability algorithm exhibits anO(n3)

worst-case time complexity [67, 93], which is commonly known

as “the cubic bottleneck” in flow analysis [37]. Applied on alias

analysis for Java, the concerned CFL is restricted to a subclass

called Dyck language that generates properly matched parenthe-

ses. For Dyck language of size k (i.e., k kinds of parentheses),

traditional Dyck-CFL-reachability algorithm runs in O(k3n3).

Improving the cubic time complexity is very hard. When the

input graph is an chain, the CFL-reachability problem can be

thought of as a CFL parsing problem, for which the best time

complexity is Boolean matrix multiplication time [52]. As a re-

sult, any breakthrough in CFL-reachability may lead to faster al-

gorithms for CFL parsing [67]. Various enhancements have been

proposed to improve the cubic complexity. For instance, Kodu-

mal and Aiken described a specialized set constraint reduction

for Dyck-CFL-reachability on graphs and obtained an O(kn3)

Dyck-CFL-reachability algorithm. Yuan and Eugster [94] pro-

posed an efficient Dyck-CFL-reachability algorithm inO(n log n log k)

time on bidirected trees. Only recently, Chaudhuri showed that

the well-known Four Russians’ Trick [11] could be employed to

speed up in the CFL-reachability algorithm to immediately yield

CHAPTER 1. INTRODUCTION 9

an O(n3/log n) algorithm [20]. Similar techniques were used in

Rytter’s work [73] for CFL parsing.

1.2.2 Boosting Practical Implementations

A worst-case cubic algorithm does not scale well on real-world

applications. The best example would be the original Andersen’s

pointer analysis algorithm [10]. It took years’ effort to make An-

dersen’s pointer analysis [32, 35, 38, 60, 71, 82] to scale. Simi-

larly, straightforward implementations of all-pairs are ill-suited

for handling large-scale applications in practice. Thus far, the

key to scale the CFL-reachability-based alias analysis is to make

the analysis demand-driven, aiming at solving the single-source-

single-sink CFL-reachability problem [80, 92, 97]. On the other

hand, the practical benefits of the subcubic CFL-reachability

algorithm [20] remains unclear, since there is no subcubic imple-

mentation for alias analysis to date.

1.3 Thesis Contributions

This thesis makes both theoretical and practical contributions

to scale CFL-reachability-based alias analysis. In particular, Ta-

bles 1.1 and 1.2 summarize our main algorithmic results for anal-

ysis on Java and C respectively. The principal contributions of

CHAPTER 1. INTRODUCTION 10

Bidirectness Input Time Space Reference

Bidirected Tree O(n log n log k) O(n log n) [94]

General Graph O(k3n3) O(kn2) [70, 93]

General Graph O(kn3) O(kn2) [47]

General Graph O(kn3/ log n) O(kn2) [20]

Bidirected Tree O(n) O(n) Algorithm 4

Bidirected Graph O(n+m log m) O(n+m) Algorithm 5

General Graph O(n(m+ S)) O(n2) Algorithm 9

Table 1.1: Dyck-CFL-reachability algorithms for alias analysis for Java on SPG.

PEG type Time Space Reference

General O(n3) O(n2) [97]

General O(n3/ log n) O(n2) [20]

Well-typed O(n(m+ M̃)) O(n2) Algorithm 15

General O(n(m+M)) O(n2) Algorithm 11

Table 1.2: CFL-reachability algorithms for alias analysis for C on PEG.

this thesis are detailed as follows:

• For alias analysis for Java on bidirected trees, we give an

algorithm that runs in O(n) time and O(n) space, which

answers the Dyck-CFL-reachability queries for any node pair

in O(1) time. This result improves the O(n log n log k)

time and O(n log n) space algorithm proposed by Yuan and

Eugster [94].

• For alias analysis for Java on bidirected graph with n nodes

and m edges, we give an algorithm that runs in O(n +

m log m) time and O(n+m) space, which answers the Dyck-

CHAPTER 1. INTRODUCTION 11

CFL-reachability queries for any node pair in O(1) time.

This result improves the traditional subcubic time result in

the literature [20].

• For alias analysis for C on the Pointer Expression Graph

(PEG), we give an all-pairs CFL-reachability algorithm that

runs in O(n(m + M)) time and O(n2) space, where M de-

notes the memory alias pairs in the final graph. Further-

more, if the given PEG is well-typed, we also give an all-pairs

CFL-reachability algorithm that runs in O(n(m+ M̃)) time

with O(n2) space, where M̃ denotes the maximum memory

alias pairs on one layer. The numbers of m and M are typ-

ically very sparse (i.e., both m and M are observed to be

O(n)), which implies our algorithms have a quadratic time

complexity in practice.

• We apply our Dyck-CFL-reachability algorithms to a state-

of-the-art context-insensitive alias analysis for Java [92]. Ex-

perimental results show that our algorithm achieves orders

of magnitude speedup on real-world benchmarks. For C,

we also present the implementation of the first subcubic

CFL-reachability-based alias analysis, and conduct large-

scale experiments on the latest stable releases of popular

C programs used from the pointer analysis literature. The

CHAPTER 1. INTRODUCTION 12

performance of the subcubic alias analysis solving all-pairs

CFL-reachability is extremely well in practice. In particu-

lar, our alias analysis algorithm is able to analyze the 10M

SLOC Linux kernel in less than 80 seconds on commodity

hardware.

1.4 Thesis Organization

This thesis is organized as follows. Chapter 2 gives explana-

tions of various terminology relevant to alias analysis and CFL-

reachability. Chapter 3 describes our fast Dyck-CFL-reachability

algorithms. Chapter 4 applies our Dyck-CFL-reachability algo-

rithms on a state-of-the-art alias analysis for Java and presents

experimental results. Then, Chapter 5 describes our fast CFL-

reachability algorithms for alias analysis for C. Chapter 6 presents

the first subcubic CFL-reachability implementation and com-

pares various CFL-reachability algorithms on latest stable re-

leases of C programs. Finally, Chapter 7 briefly surveys related

work, and Chapter 8 concludes.

2 End of chapter.

Chapter 2

Background

In this chapter, we present a brief introduction to CFL-reachability-

based alias analysis. The aim of this chapter is to give the suf-

ficient background materials to understand the main results in

the forthcoming chapters. In particular, Section 2.1 introduces

the definitions and the dimensions of pointer analysis. Sec-

tion 2.2 discusses the two traditional approaches to alias analy-

sis via points-to analysis. Section 2.3 presents the introduction

to CFL-reachability. Finally, Section 2.4 briefly mentions two

CFL-reachability formulations for alias analysis that our fast al-

gorithms adopt in later chapters.

2.1 Pointer Analysis

Pointer analysis is a static analysis which aims to determine the

pointer usage in imperative languages such as C and Java. In

13

CHAPTER 2. BACKGROUND 14

int *a,*b;

int *c,*d,*e;

a = malloc();

b = a;

c = &b;

d = *c;

*c = e;

Figure 2.1: An simple example illustrates the pointer usage in C.

general, pointer analysis is composed of points-to analysis and

alias analysis. This thesis follows the work of Hind [40] to make

the distinction between points-to analysis and alias analysis.

2.1.1 Points-to Analysis

In imperative languages, a pointer variable can be assigned with

the memory location of other variables. For Example, in C lan-

guage, a pointer variable of type int* can be used to denote the

address of an integer variable. In Java, a variable can point to

the heap location returned by new operator.

A points-to analysis typically computes a set of memory loca-

tions that each pointer variable may point to during the execut-

ing of a program. Let loc(x) and pt(x) be the memory location

and points-to set of variable x respectively. We say pointer vari-

able x may point to variable y iff loc(y) ∈ pt(x).

For example in Figure 2.1, pointer c may points to b and

pointer a may points to an abstract location on heap. In C

CHAPTER 2. BACKGROUND 15

language, the memory location can be obtained via either the

address-of operator (e.g., &x) or dynamic memory allocation (e.g.,

malloc()). A dereference expression *x obtains the lvalue [45] of

variable x. In Java language, the memory location is typically

obtained via the new operator. Moreover, the references to objects

play the similar rule as the pointers in C, e.g., calling the meth-

ods of a class such as A.a() can be thought of as dereferencing

the class variable A.

2.1.2 Alias Analysis

In general, an alias occurs at some program point if two pointer

variables point to the same memory location. The two pointer

variables are called aliases. The pair of aliases can also be called

aliasing pair, alias pair or, simply, aliasing.

A alias analysis typically computes all alias pairs during the

executing of a program. In C language, aliasing may occur due

to the pointer assignments (e.g., **a = *b), array indexing (e.g.,

a[i]) and union accesses (e.g., a.b). In Java, aliasing may occur

due to the field access (e.g., A.a) and method invoking (e.g., A.a())

of a particular class variable A.

For example in Figure 2.1, pointer variables d and e are aliases

due to the assignments associated with *c. Note that the aliasing

CHAPTER 2. BACKGROUND 16

relation is reflexive, i.e., a aliases with a. It is also symmetric,

i.e., a aliases with b implies b aliases with a. However, it is not

transitive [97].

2.1.3 Analysis Dimensions

In the pointer analysis literature, some dimensions are used to

classify different pointer analyses. Many papers on pointer anal-

ysis use these dimensions to place their work, e.g., the work of

Ryder [72].

Flow-Sensitivity

Flow-sensitivity determines whether the analysis takes the con-

trol flow into consideration. The control flow of a program de-

fines the execution order of program statements. Typically, it is

depicted using a directed graph known as a control flow graph.

The nodes in the graph represent either basic blocks or predi-

cates, where predicates usually represent branching statements

(e.g., if statements) which split the control flow and basic blocks

denote the set of program statements without predicates.

A flow-sensitive analysis respects the control flow of a pro-

gram and computes separate solutions for each program point.

However, a flow-insensitive analysis ignores the control flow and

computes a single solution of the entire program or procedure.

CHAPTER 2. BACKGROUND 17

1: a = &x;

2: a = &y;

Figure 2.2: An example illustrates the flow-sensitivity of pointer analysis.

Namely, a flow-insensitive analysis assumes the program state-

ments can be executed in any order. The most general approach

towards a flow-sensitive analysis is to solve a system of data-flow

equiations w.r.t. the control flow graph [46, 58].

Example 1 Let us consider the example in Figure 2.2. The el-

ementary example contains two lines of code without branching

statements. A flow-insensitive points-to analysis computes the

solution pt(a) = {loc(x), loc(y)} for the whole code snippet. A

flow-sensitive points-to analysis computes pt(a) = {loc(x)} at

line 1 and pt(a) = {loc(y)} at line 2. Note that the value of a is

overwritten at line 2. A flow-sensitive analysis should be able to

analyze it by performing strong updates of memory locations.

Context-Sensitivity

Context-sensitivity determines whether the analysis takes the

procedure invocation into consideration. A typical program could

be composed of various procedures (a.k.a. functions or methods

in different terminologies). A procedure can be possibly invoked

by another procedure for multiple times on different call sites.

A context-sensitive analysis respects the calling context of a

CHAPTER 2. BACKGROUND 18

1: int* id(int* x){ return x; }

2: int main(){

3: int *a, *b,*c, *d;

4: b = id(a);

5: d = id(c);

6: return 0;

7: }

Figure 2.3: An example illustrates the context-sensitivity of pointer analysis.

procedure and computes separate solutions for each call site.

Namely, a context-sensitive analysis keeps track of the calling

context of a procedure while analyzing it. However, a context-

insensitive analysis merges different calling contexts together.

Example 2 Let us consider the example in Figure 2.3. The id()

procedure simply returns a pointer variable according to its pa-

rameter. A flow-insensitive alias analysis merges two procedure

calls at lines 4 and 5 and obtains four alias pairs: 〈b, a〉, 〈b, c〉,

〈d, a〉 and 〈d, c〉. In contrast, a context-sensitive alias analysis

distinguishes the two call sites and obtains two alias pairs: 〈b, a〉

and 〈d, c〉.

Field-Sensitivity

Field-sensitivity deals with how aggregates (e.g., structures and

objects) are handled by the analysis. Unlike the primitive vari-

ables, an aggregate can be accessed via different fields. For ex-

ample, the Data object in JDK contains various fields such as Day,

CHAPTER 2. BACKGROUND 19

1: typedef struct{ int *f; int *g; } T;

2: T a, b;

3: int x, y, z;

4: a.f = &x;

5: a.g = &y;

6: b.g = &z;

Figure 2.4: An example illustrates the field-sensitivity of pointer analysis.

Month and Year.

There are three classical treatments on field-sensitivity. A

field-insensitive analysis discards the field information that mod-

els all field accesses as the accesses to a single representative

variable. A field-sensitive analysis respects the field information

and models each field access as a unique access to the aggregate.

Finally, a field-based analysis [38] models each field access as the

access to all aggregates that contain this field.

Example 3 Let us consider the example in Figure 2.4. Aggre-

gate T contains two fields. A field-insensitive points-to analysis

computes two points-to sets: pt(a) = {loc(x), loc(y)} and pt(b) =

{loc(z)}. A field-based points-to analysis computes two points-to

sets: pt(T.f) = {loc(x)} and pt(T.g) = {loc(y), loc(z)}. Finally,

a field-sensitive points-to analysis computes three points-to sets:

pt(a.f) = {loc(x)}, pt(a.g) = {loc(y)} and pt(b.g) = {loc(z)}.

CHAPTER 2. BACKGROUND 20

2.1.4 Computability and Complexity

Despite the different analysis dimensions, precise pointer analysis

is a computationally hard problem. In this section, we briefly

introduce some computability and complexity results.

To begin with, let us discard the impact of procedure calls

(i.e., be context-insensitive and intra-procedural) and consider

the pointer analysis within a single procedure. When the dy-

namic memory allocation is allowed, the precise flow-sensitive

pointer analysis with non-scale variables (i.e., with structures

and arrays) is undecidable [49, 64]. Specifically, Landi [49] first

established the undecidable result by showing a reduction of the

halting problem. Later, Ramalingam [64] provided a simpler

proof by reducing the pointer analysis problem to the Post’s Cor-

respondence problem [61]. The undecidability result holds even

if the programs are restricted with only scalar variables (i.e.,

primitive variables) [17]. When dynamic memory allocation is

disallowed, the configuration space of pointers are finite and the

precise flow-sensitive pointer analysis becomes pspace-complete.

When the programs are further restricted with at most two levels

of dereferences (e.g., int **), the problem is in P.

Then, we shift the discussion to the flow-insensitive analy-

sis. When dynamic memory allocation is disallowed, the precise

CHAPTER 2. BACKGROUND 21

flow-insensitive pointer analysis is NP-hard with arbitrary lev-

els of dereferences [41]. The hardness result was established by

showing a reduction of the Hamiltonian path problem. Further-

more, if the pointer variables are restricted to be scalars with

well-defined types, the problem is in P [17].

These computability and complexity results reflect the general

setting of pointer analysis problem. In practice, any pointer anal-

ysis must approximate the exact solution and explore the trade-

off between precision and performance. Flow-sensitive analysis

offers the precision, but is more expensive to compute compared

with the flow-insensitive analysis. Moreover, it can be inferred

that taking the context-sensitive and field-sensitive into consider-

ation makes the analysis more precise but computationally more

expensive.

This thesis focuses on flow- and context-insensitive pointer

analysis. In the next section, we introduce two traditional flow-

insensitive pointer analyses.

2.2 Traditional Approaches to Alias Analysis

Given two variables p and q, traditional approach to determine

whether p and q are aliases is to perform a points-to analysis and

check whether pt(p)∩pt(q) is non-empty. In this section, we de-

CHAPTER 2. BACKGROUND 22

scribe two popular flow-insensitive points-to analysis approaches

in the literature.

Before performing the actual analysis, traditional points-to

analysis needs to pre-process the given program. All assignment

statements manipulating pointer variables are normalized into a

canonical form that consists of four kinds for statements:

S ::= p := &q

| p := q

| ∗p := q

| p = ∗q

Specially, multiple uses of dereferences are replaced with a se-

quence of statements by introducing new temporaries. For exam-

ple, a statement like **p = q is normalized into *p = temp and *temp

= q. Note that the normalization pass causes some precision loss,

since it introduces additional points-to or alias pairs to the orig-

inal program [13, 17, 41]. The key distinction between the two

approaches lies in the way that they process these assignment

statements.

CHAPTER 2. BACKGROUND 23

Statement Constraint Name

p = &q loc(q) ∈ pt(p) [AddrOf]

p = q pt(p) = pt(q) [Copy]

*p = q ∀a ∈ pt(p).pt(a) = pt(q) [Store]

p = *q ∀a ∈ pt(q).pt(p) = pt(a) [Load]

Figure 2.5: Constraints for flow-insensitive unification-based points-to analysis.

2.2.1 Unification-based Analysis

Unification-based (a.k.a. Steensgaard-style) pointer analysis [81]

unifies the memory locations and computes a single representa-

tive location for each normalized statements. Specifically, unification-

based pointer analysis processes each normalized statement using

equality constraints described in Figure 2.5. For example, given

a Copy statement p = q, the analysis merges the two points-to

sets pt(p) and pt(q), and outputs a single representative set.

The most appealing feature of unification-based analysis is

that the algorithm can be efficiently implemented using a Union-

Find data structure [24]. Namely, “merging two points-to sets”

can be implemented using the Union() operation. Note that in

the Union-Find algorithm, there is no need to enumerate each el-

ement in a points-to set when processing the Store and Load

constraints. The unification-based algorithm runs very fast in

practice since each statement only needs to be processed once.

As a result, the time complexity of unification-based pointer

CHAPTER 2. BACKGROUND 24

int *a,*b;

int *c,*d,*e;

a = &b;

a = &c;

d = &e;

d = a;

Figure 2.6: An example for unification-based and inclusion-based pointer analysis.

Statement Constraint Name

p = &q loc(q) ∈ pt(p) [AddrOf]

p = q pt(q) ⊆ pt(p) [Copy]

*p = q ∀a ∈ pt(p).pt(q) ⊆ pt(a) [Store]

p = *q ∀a ∈ pt(q).pt(a) ⊆ pt(p) [Load]

Figure 2.7: Constraints for flow-insensitive inclusion-based points-to analysis.

analysis is O(nα(n)), where n denotes the number of variables

and α(n) is the inverse Ackermann’s function [24].

Example 4 Figure 2.6 shows a C code snippet. The first two

statements generate the constraint pt(a) = {loc(b), loc(c)}. Sim-

ilarly, the third statement generates pt(d) = {loc(e)}. The last

statement makes pt(d) and pt(a) identical by performing Union()

operation on the corresponding points-to sets , i.e., pt(d) = pt(a) =

{loc(b), loc(c), loc(e)}.

2.2.2 Inclusion-based Analysis

Inclusion-based (a.k.a. Andersen-style) pointer analysis [10] gen-

erates subset constraints descried Figure 2.7 and propagates these

constraints among assignment statements. Due to the inclusions,

CHAPTER 2. BACKGROUND 25

new subset constraints may alter the current sets. Therefore, the

actual points-to sets are obtained by computing the fixed-point

solution of all subset constraints.

Inclusion-based pointer analysis offers a more precise solution

than unification-based pointer analysis. However, it is more ex-

pensive to compute. For example, in order to compute the fixed-

point on the [load] statements, each element a in pt(q) must

be enumerated to generate new subset constraints. As we shall

discuss in Section 2.3.2, the time complexity of inclusion-based

pointer analysis is O(n3). Over the yeas, a lot of enhancements

have been proposed to scale the inclusion-based pointer analysis.

Example 5 Let us consider the example in Figure 2.6 again.

Inclusion-based analysis generates the same constraints as unification-

based analysis on the first three statements. However, for inclusion-

based analysis, the last statement makes pt(a) a subset of pt(d).

Therefore, pt(d) is now {loc(b), loc(c), loc(e)}. Note that inclusion-

based analysis is more precise in the sense that loc(e) is not in

pt(a) in any execution order.

2.3 CFL-Reachability

Context-free language (CFL) reachability [67, 93] is an extension

to standard graph reachability. Let CFG = (Σ, N, P, S) be a

CHAPTER 2. BACKGROUND 26

context-free grammar with alphabet Σ, nonterminal symbols N ,

production rules P and start symbol S. Given a context-free

grammar CFG = (Σ, N, P, S) and a directed graph G = (V,E)

with each edge (u, v) ∈ E labeled by a terminal L(u, v) from the

alphabet Σ or ε, each path p = v0, v1, v2, . . . , vm in G realizes a

string R(p) over the alphabet by concatenating the edge labels in

the path in order, i.e., R(p) = L(v0, v1)L(v1, v2) . . .L(vm−1, vm).

Let X be a nonterminal, we define X-paths as follows:

Definition 1 (X-path) A path p = u, . . . , v in G is an X-path

if the realized string R(p) can be derived from the nonterminal

symbol X ∈ N , represented as a summary edge (u,X, v).

The CFL-reachability problem is to determine if there is an

S-path from node u to v in G, where S is the start symbol. In

particular, the CFL-reachability problem has four variants:

(1) The all-pairs S-path problem: For every pair of nodes u and

v, is there an S-path in G from u to v?

(2) The single-source S-path problem: Given a source node u,

for all nodes v, is there an S-path in G from u to v?

(3) The single-target S-path problem: Given a target node v, for

all nodes u, is there an S-path in G from u to v?

CHAPTER 2. BACKGROUND 27

(4) The single-source-single-sink problem: Given two nodes u

and v, is there an S-path in G from u to v?

2.3.1 Traditional CFL-Reachability Algorithm

In the literature, there is a popular dynamic-programming al-

gorithm [70, 93] for solving the all-pairs CFL-reachability prob-

lem. It is described in Algorithm 1, where W denotes a worklist,

(u,A, v) denotes the directed edge (u, v) with label L(u, v) = A,

and Out(u,A) denotes the set of all outgoing A-edges of u, i.e.,

Out(u,A) = {v | (u,A, v)}. The main algorithm has two steps:

(1) CFG Normalization — The underlying CFG must be con-

verted to a normal form, similar to the Chomsky Normal Form.

When the grammar is in the normal form, all production rules

are of the form A → BC, A → B or A → ε, where A is non-

terminal, B and C are terminals or nonterminals, and ε denotes

the empty string; and (2) “Filling in” New Edges — In order to

compute the S-paths, new edges are added to the graph. For ex-

ample, lines 11-14 describe that for the production rule A→ BC

and edge (i, B, j), all outgoing edges of node j are considered. If

there is an outgoing edge (j, C, k), a new summary edge (i, A, k)

is added to G if it is not in the current graph. The algorithm

terminates if there are no more new edges to be added.

CHAPTER 2. BACKGROUND 28

Algorithm 1: CFL-Reachability Algorithm.

Input : Edge-labeled directed graph G = (V,E); normalized
CFG = (Σ, N, P, S);

Output: the set of summary edges;
1 add E to W ;
2 foreach production A→ ε ∈ P do
3 foreach node v ∈ V do
4 if (v,A, v) 6∈ G then
5 insert (v,A, v) to G and to W ;

6 while W 6= ∅ do
7 (i, B, j)← select-from(W) ;
8 foreach production A→ B ∈ P do
9 if (i, A, j) 6∈ G then

10 insert (i, A, j) to G and to W ;

11 foreach production A→ BC ∈ P do
12 foreach k ∈ Out(j, C) do
13 if (i, A, k) 6∈ G then
14 insert (i, A, k) to G and to W ;

15 foreach production A→ CB ∈ P do
16 foreach k ∈ In(i, C) do
17 if (k,A, j) 6∈ G then
18 insert (k,A, j) to G and to W ;

2.3.2 Complexity

Both of the inclusion-based pointer analysis and CFL-reachability

problems have cubic time complexity in the worst case [35, 67,

79]. The inclusion-based pointer analysis works on a constraint

graph where each node represents a pointer variable and each

edge represents set inclusion. In the worst case, there are O(n2)

inclusions in the graph. In essence, the inclusion-based analysis

algorithm computes dynamic transitive closure, which immedi-

CHAPTER 2. BACKGROUND 29

ately yields its O(n3) complexity.

The situations in CFL-reachability is similar. The running

time of Algorithm 1 is dominated by line 12 and line 16. When

each item is removed from the worklist, it takes time O(n) to

generate new items. In the worst case, there can be O(n2) items

in the worklist. As as result, the overall algorithm takes time

O(n3) in the worst case.

The worst case complexity of both problems is hard to im-

prove. Only recently, Chaudhuri shows that the well-known

Four Russians’ Trick [11] can be employed at lines 12-13 and

lines 16-17 in the CFL-reachability algorithm to yield a subcubic

algorithm with an O(n3/ log n) time complexity [20]. When the

concerned CFL is restricted to the Dyck language that generates

matched pairs of parentheses, an algorithm with O(n+m log m)

time complexity exists [95].

2.4 Alias Analysis via CFL-Reachability

Alias analysis for C and Java has been formulated as a CFL-

reachability problem, with precision equivalent to an inclusion-

based points-to analysis. The advantage of CFL-reachability-

based alias analysis is that the alias information can be directly

computed without first obtaining each variable’s points-to set.

CHAPTER 2. BACKGROUND 30

This thesis follows two CFL-reachability formulations for alias

analysis. Specifically, alias analysis for Java has been formu-

lated as a Dyck-CFL-rechability problem on symbolic points-to

graph (SPG) [90, 92]. And alias analysis for C has been formu-

lated as a CFL-reachability problem on pointer expression graph

(PEG) [97].

In the following chapters, we propose a set of fast algorithms

for scaling CFL-reachability-based alias analysis. Specifically,

in Chapters 3 and 4, we present fast Dyck-CFL-reachability al-

gorithms for alias analysis for Java. In Chapters 5 and 6, we

present fast CFL-reachability algorithms for alias analysis for C.

Moreover, Chapter 5 also offers a CFL-reachability-based pointer

analysis algorithm on the well-typed C subset.

2 End of chapter.

Chapter 3

Fast Dyck-CFL-Reachability

Algorithms

3.1 Introduction

When the underlying CFL is restricted to a Dyck language which

generates matched parentheses, the CFL-reachability problem

is referred to as Dyck-CFL-reachability. Although a restricted

version of CFL-reachability, Dyck-CFL-reachability can express

“almost all of the applications of CFL-reachability” in program

analysis [47]. Specifically, alias analysis for Java has been formu-

lated as a Dyck-CFL-Reachability problem on symbolic points-to

graph [80, 90, 92].

Solving Dyck-CFL-reachability of size k (i.e., k kinds of paren-

theses) is expensive in practice. The traditional dynamic pro-

gramming style CFL-reachability algorithm [70, 93] runs inO(k3n3)

31

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 32

time. Only recently, the first subcubic algorithm was proposed,

reducing the cubic time complexity by a factor of log n [20].

Scaling Dyck-CFL-reachability-based analyses on real-world ap-

plications is challenging. Various enhancements have been pro-

posed, such as leveraging demand-driven properties in specific

analyses [80, 92, 97], making use of a specialized reduction to

set constraints [47], and approximating the client problems [78,

80]. However, all existing Dyck-CFL-reachability algorithms re-

lying on the dynamic programming scheme exhibit a subcubic

time complexity. When the underlying graphs are restricted to

bidirected trees, Yuan and Eugster proposed an algorithm with

O(n log n log k) time complexity [94].

In this chapter, we focus on the Dyck-CFL-reachability prob-

lem, as detailed in Section 3.2.2. The bidirected Dyck-CFL-

reachability is particularly suitable for pointer analysis. All

state-of-the-art demand-driven pointer analyses [74, 78, 80, 92,

97] are formulated by extending Dyck-CFL-reachability and com-

pute on edge-labeled bidirected graphs. Specifically, matched

parentheses derived from Dyck-CFL-reachability can be used to

capture field accesses (i.e., load/store) in Java [78, 80, 90, 92] and

indirections (i.e., references/dereferences) in C [97]. The bidi-

rectness of graphs is also a prerequisite for CFL-reachability for-

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 33

mulations of pointer analyses as discussed by Reps [67]. Namely,

edges in the original graph need to be augmented with reverse

edges (a.k.a. barred edges). Otherwise, two nodes may not be

reachable even via standard graph reachability.

This chapter proposes three fast algorithms for solving the

Dyck-CFL-reachability on trees and graphs respectively. The

key insight behind our bidirected algorithms is the observation

of an equivalence property on bidirected structures that has not

been fully utilized in previous work. We exploit this property to

obtain asymptotically much faster algorithms by safely collaps-

ing nodes that belong to the same equivalence class. Moreover,

the key insight behind our general Dyck-CFL-reachability algo-

rithm is to dynamically maintain the transitive closure w.r.t. rule

S → SS, which improves the complexity by making it sensitive

to the S-edges in the final graph.

The chapter is structured as follows. Section 3.2 reviews the

background material on Dyck-CFL-reachability. Section 3.3 dis-

cusses the equivalence property and a näıve all-pairs Dyck-CFL-

reachability algorithm. Sections 3.4 and 3.5 present our fast

algorithms for bidirected Dyck-CFL-reachability on trees and

graphs respectively. Finally, Section 3.6 presents the algorithm

for solving general Dyck-CFL-reachability.

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 34

3.2 Preliminaries

This section reviews basic background on Dyck-CFL-reachability

and defines its bidirected variants. We also include the tradi-

tional subcubic solution for reference and completeness.

3.2.1 Dyck-CFL-Reachability

The Dyck-CFL-reachability is defined similarly to CFL-reachability

described in Section 2.3, by restricting the underlying CFL to

a Dyck language, which generates strings of properly balanced

parentheses. Consider an alphabet Σ over the set of opening

parentheses A = {a1, a2, . . . , ak} and the set of their matching

closing parentheses Ā = {ā1, ā2, . . . , āk}. The Dyck language of

size k (i.e., k kinds of parentheses) is defined by the following

context-free grammar:

S → SS | a1Sā1 | ... | akSāk | ε

where S is the start symbol and ε is the empty string. Specially,

we say node v is Dyck-reachable from node u iff there exists an

S-path from u to v, where S is the start symbol in the Dyck

grammar above. We call such a path joining nodes u and v a

Dyck-path.

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 35

3.2.2 Bidirected Dyck-CFL-Reachability

In Sections 3.4 and 3.5, we focus on the bidirected Dyck-CFL-

reachability problems, which require the underlying graph to be

bidirected and edge-labeled. For any directed edge (u, v) in the

graph that is not labeled by ε, if it is labeled by an opening

parenthesis ai ∈ A, there must be a reverse edge (v, u) which is

labeled by a matching closing parenthesis āi ∈ Ā, and vice versa.

Formally, we have the following definition.

Definition 2 (Bidirected Dyck-CFL-Reachability) Given a

bidirected graph G = (V,E) and a Dyck language of size k, the

labels of directed edges in the graph must satisfy the following

constraints:

• ∀u, v ∈ V, if L(u, v) = ε, L(v, u) must be ε;

• ∀u, v ∈ V, if L(u, v) = ai, L(v, u) must be āi;

• ∀u, v ∈ V, if L(u, v) = āi, L(v, u) must be ai.

The bidirected Dyck-CFL-Reachability and its four variants are

defined similarly as Dyck-CFL-Reachability.

The Dyck-CFL-reachable node pairs (u, v) can be defined as

a binary relation D.

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 36

2 3

4 51

a1

ā1

a2
a1 ā2

(a) The directed graph case.

2 3

4 51
a1

ā1

ā2

a2

ā1

a1
ā1a1 a2ā2

(b) The bidirected graph
case.

Figure 3.1: Example graphs illustrating a directed graph and its corresponding
bidirected graph.

Definition 3 (Dyck-CFL-Relation) Given a bidirected graph

G = (V,E), we call a binary relation D on V × V a Dyck-CFL-

relation iff for all (u, v) ∈ D, v is Dyck-reachable from u in

G.

We give an example to illustrate the Dyck-CFL-reachability and

the bidirected Dyck-CFL-reachability problems.

Example 6 Consider the two graphs in Figure 3.1. The graph

to the left shows a directed graph for Dyck-CFL-reachability, and

the one to the right is its bidirected counterpart. In both graphs,

the realized string R(p) of the path p = 1, 2, 3, 4, 5 is “a1ā1a2ā2”,

with properly matched parentheses. Therefore, node 5 is Dyck-

reachable from node 1. However, the path 1, 4, 5 is not a valid

Dyck-path.

The bidirected Dyck-CFL-reachability formulation has wide

applications in pointer analysis. For pointer analysis problems,

the directed edges in the underlying graph must be augmented

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 37

with reverse edges (a.k.a. barred edges) [67], otherwise, two

nodes may not be reachable from each other even by standard

graph reachability. All existing CFL-reachability formulations

for pointer analysis require the underlying graph to be bidi-

rected. In addition, many pointer analyses employ Dyck-CFL-

reachability to match certain properties, such as field accesses

(i.e., load/store) in Java [78, 80, 90, 92] and indirections (i.e.,

references/dereferences) in C [97], which naturally satisfy the

requirements of bidirected Dyck-CFL-reachability.

3.3 Dyck-CFL-Relation

3.3.1 An Equivalence Property

We first study an equivalence property of Dyck-CFL-relations D

on bidirected trees and graphs, which has not been fully utilized

in previous work. Since trees are simply graphs without cycles,

we use the more general term “graph” to illustrate the equiva-

lence property. A binary relation ∼ ⊆ B × B on a set B is an

equivalence relation iff it is reflexive, symmetric and transitive.

Specifically,

• ∼ is reflexive if ∀a ∈ B, a ∼ a;

• ∼ is symmetric if ∀a, b ∈ B, a ∼ b =⇒ b ∼ a; and

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 38

• ∼ is transitive if ∀a, b, c ∈ B, a ∼ b ∧ b ∼ c =⇒ a ∼ c.

For a given bidirected graph G = (V,E), we consider the

Dyck-CFL-relation D over V × V . Based on the definition of

relation D, node v ∈ V is Dyck-reachable from node u ∈ V

iff (u, v) ∈ D. We list below the properties of relation D on

bidirected graphs:

• Relation D is reflexive: This is because the start symbol S

in the Dyck grammar is nullable (i.e., it generates the empty

string ε). Therefore, (u, u) ∈ D for all u ∈ V .

• Relation D is symmetric: One can identify a symmetric re-

lation by showing it is equal to its inverse. For the bidirected

graphs, the realized string R(p) on a path p from node u to

v is the reverse of R(p′) on the reverse path p′ from v to u.

It is easy to show R(p) is generated by the Dyck grammar

iff R(p′) is generated by the Dyck grammar with a simple

induction on the path length. As a result, if v is Dyck-

reachable from u (i.e., (u, v) ∈ D), u is also Dyck-reachable

from v (i.e., (v, u) ∈ D).

• Relation D is transitive: That is, for any three nodes u, v, w ∈

V in graph G = (V,E), if v is Dyck-reachable from u (i.e.,

(u, v) ∈ D) and w is Dyck-reachable from v (i.e., (v, w) ∈ D),

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 39

w is Dyck-reachable from u (i.e., (u,w) ∈ D). It is immedi-

ate that the realized string R(p1) for any path p1 connecting

node u and v can be derived from the start symbol S in the

Dyck grammar. Similarly, the realized string R(p2) for any

path p2 connecting nodes v and w is also generated from

the Dyck grammar. Consequently, the concatenated string

R(p1)R(p2) is generated by the Dyck grammar because of

the rule S → SS. Hence, the path p1p2 from node u to w is

also a Dyck-path.

The discussions above lead to the following lemma.

Lemma 1 The Dyck-CFL-relation D on a bidirected graph is an

equivalence relation.

The key insight in our algorithms is that the equivalence prop-

erty can be exploited to obtain asymptotically much faster al-

gorithms. All nodes in the Dyck-CFL-relation D are equal to

the other nodes in the graph, and thus nodes that belong to

the same equivalence class can be safely collapsed to a single

representative node. For example, in Figure 3.1(b), node 3 is

Dyck-reachable from 1, thus, they can be collapsed into a single

representative node {1, 3} indicating that they are in the same

equivalence class. Similarly, node 5 can be collapsed to the rep-

resentative node {1, 3} as well. Finally, we have a representative

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 40

node {1, 3, 5} reflecting the fact that the three nodes are Dyck-

reachable from each other in the graph.

3.3.2 A Näıve Approach

We proceed to give a näıve all-pairs Dyck-CFL-reachability algo-

rithm by collapsing the nodes in the graph that are in the Dyck-

CFL-relation D. Let ai〈u, v〉 denote the directed edge (u, v)

labeled by ai ∈ A. We note that while collapsing two Dyck-

reachable nodes x and y in the graph, there always exists a node

z such that ai〈x, z〉 = ai〈y, z〉. For example, in Figure 3.1(b), we

have a1〈1, 2〉 = a1〈3, 2〉. Without loss of generality, given a bidi-

rected graph G(V,E), the näıve algorithm can work on a directed

graph G′(V ′, E ′) by removing all edges labeled by closing paren-

theses from the original graph, i.e., V ′ = V and ai〈u, v〉 ∈ E ′ iff

ai〈u, v〉 ∈ E for all labeled edges in E ′. The basic idea of the

näıve approach is to explicitly maintain a list W of nodes. For

every item z popped from W , we pick two incoming neighbors x

and y whose edges are labeled by the same opening parenthesis

i.e., ∃ai〈x, z〉 = ai〈y, z〉, and then collapse x and y since they

are Dyck-reachable via z. Due to the collapsing between nodes,

E ′ may possibly contain multiple edges. The whole algorithm

terminates if W is empty.

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 41

The näıve algorithm is given in Algorithm 2, where Eq nodes[v]

denotes the equivalence set of node v and Set[v] denotes the

equivalence set number that node v belongs to. The procedure

Has-same-in(v) traverses all incoming neighbors of node v, and

returns true if there exist two neighbors u1 and u2 such that

ai〈u1, v〉 = ai〈u2, v〉. In Algorithm 2, line 1 transforms the given

graph G to G′, and lines 2-5 initialize W and Eq nodes[v]. Lines 10-

26 collapse node y to x w.r.t. node z, and remove y. The detailed

procedure on collapsing y to x is given in Section 3.5.1. Finally,

lines 29-31 assign the equivalence set number to each node v,

such that any query can be answered in O(1) time.

Complexity Analysis. The time complexity of the näıve algorithm

is O(kn2). We begin by analyzing the maximum number of steps

that the “while” loop on line 6 can be executed. We note that

Algorithm 2 adds items to W only through lines 5 and 25. On

line 25, item x can be added to W for at most n− 1 times, since

line 26 can be executed for at most n− 1 times. On line 5, W is

initialized with n items. Therefore, the worklist W can be filled

with at most 2n− 1 items by Algorithm 2. In the “while” loop,

only line 28 removes an item from W , thus, the “else” part of the

“if” statement can be executed for at most 2n− 1 times. Since

the “then” part of the same “if” statement can be executed for

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 42

Algorithm 2: A näıve Dyck-CFL-reachability algorithm.

Input : Edge-labeled directed graph G = (V,E)
Output: Set[v] for all v ∈ V

1 transform the input graph G to G′ = (V ′, E′)
2 initialize W to be empty
3 foreach v ∈ V ′ do
4 Eq nodes[v] = {v}
5 if Has-same-in(v) then add v to W

6 while W 6= ∅ and |V ′| > 1 do
7 let z be the front node from W
8 if z ∈ V ′ and Has-same-in(z) then
9 let x, y be two nodes such that ∃ai〈x, z〉 = ai〈y, z〉

10 Eq nodes[x] = Eq nodes[y] ∪ Eq nodes[x]
11 foreach ai ∈ A do
12 if ai〈y, y〉 ∈ E′ then
13 if ai〈x, x〉 /∈ E′ then add ai〈x, x〉 to E′

14 remove ai〈y, y〉 from E′

15 foreach ai ∈ A do
16 foreach w ∈ V ′ do
17 if ai〈w, y〉 ∈ E′ then
18 if ai〈w, x〉 /∈ E′ then
19 add ai〈w, x〉 to E′

20 remove ai〈w, y〉 from E′

21 if ai〈y, w〉 ∈ E′ then
22 if ai〈x,w〉 /∈ E′ then
23 add ai〈x,w〉 to E′

24 remove ai〈y, w〉 from E′

25 add x to W if x /∈W and Has-same-in(x)
26 remove y from V ′

27 else
28 remove z from W

29 foreach v ∈ V ′ do
30 foreach u ∈ Eq nodes[v] do
31 Set[u] = v

at most n − 1 times, the “while” loop can be executed for at

most (n − 1) + (2n − 1) = 3n − 2 = O(n) times. For each item

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 43

z popped from W in the “while” loop, lines 8-28 take O(kn)

time to process. Specifically, the procedure has-same-in(v) on

lines 8 and 25 takes O(kn) time to traverse all neighbors of node

v, and the two “foreach” loops on lines 15 and 16 are bounded by

|A| = k and |V ′| = n respectively. Therefore, Algorithm 2 takes

O(kn2) time. The space complexity is O(n+m), since the input

graph can be stored using FDLL to be introduced in Section 3.5.1

with O(m) space and the worklist W takes O(n) space. Putting

everything together, we have the following theorem:

Theorem 1 Algorithm 2 pre-processes the input graph in O(kn2)

time and O(n+m) space to answer any online bidirected Dyck-

CFL-reachability query in O(1) time.

In the following two sections, we describe two improved al-

gorithms. They share the same insight with the the näıve ap-

proach, which have better time complexities on bidirected trees

and graphs respectively. Specifically, our tree algorithm in Sec-

tion 3.4 uses a single tree walk to find all equivalence sets because

trees do not contain cycles. Our graph algorithm in Section 3.5

employs improved data structures to track nodes in W and to

merge edges on x and y.

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 44

3.4 Dyck-CFL-Reachability Algorithm on Bidirected

Trees

This section presents our algorithm for solving the all-pairs Dyck-

CFL-reachability problem on bidirected trees. Its time and space

complexities are O(n) and O(n) respectively, and it answers any

reachability query in O(1) time. We remind the reader that the

previous best result on bidirected trees [94] has O(n log n log k)

time and O(n log n) space complexities. First, we describe a

linear-sized data structure to store the all-pairs reachability in-

formation. We then show how to utilize the equivalence property

to solve the all-pairs Dyck-CFL-reachability problem using a sin-

gle walk on trees.

3.4.1 The Stratified-Sets Representation

In our algorithm, the all-pairs Dyck-CFL-reachability informa-

tion is stored in disjoint sets. Two nodes u and v are Dyck-

reachable from each other in the tree iff they belong to the same

set. In other words, each disjoint set C corresponds to an equiv-

alence class described by relation D, i.e., u, v ∈ C iff (u, v) ∈ D.

We name the disjoint set representation in our main algorithm

as Stratified-Sets.

The Stratified-Sets consist of several disjoint sets span-

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 45

ning over different layers. Each disjoint set stores the nodes that

are Dyck-reachable from each other in the bidirected tree. The

layers are indexed by an integer i. Note that the layer informa-

tion is only used for providing a better explanation. The layer

index i grows downward, i.e., layer i is the upper layer in any two

adjacent layers i and i+ 1. The disjoint sets on the same layer i

have no edges directly connecting each other. For any two adja-

cent layers i and i+ 1, there exists at least one edge connecting

two disjoint sets C from layer i and C ′ from layer i + 1. Spe-

cially, the connecting edge is labeled by L(u, v) ∈ A, respecting

the fact that there exist u ∈ C and v ∈ C ′ such that (u, v) is a

directed edge in the tree with the same label L(u, v) ∈ A. Note

that there can be at most k edges connecting the set C ′ with

the distinct sets from the upper layer i. However, more than

k edges are possible for connecting the set C with the distinct

sets from the lower layer i + 1. Figure 3.2(b) shows an exam-

ple Stratified-Sets representation, where there are seven sets

spanning four layers.

The Stratified-Sets representation is implemented using

three ingredients: one integer variable curset, two integer arrays

Set[v] and Up[Set[v]][ai]. Set[v] records the equivalence set number

that node v belongs to, and Up[Set[v]][ai] stores the equivalence

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 46

set number of the set from the upper layer that is connected to

Set[v] w.r.t. the edge labeled by the opening parenthesis ai ∈ A.

The Stratified-Sets uses the integer variable curset to keep

track of the current total number of disjoint sets. Due to the

Up array, the tree algorithm does not need the layer information

explicitly. The Stratified-Sets implementation also permits

three operations: Init(v), Find(v) and Add(v, e) described in Proce-

dure 3. The functioning of procedures Init(v) and Find(v) is fairly

straightforward. The procedure Init(v) takes a node v as input,

assigns it to a new set indexed by curset in Stratified-Sets,

and increases the curset count. Find(v) returns the equivalence set

number that node v belongs to.

We detail the description of procedure Add(v, e) to illustrate the

idea of collapsing nodes in relation D. We use Add(v, e) to insert

the node v to the Stratified-Sets with regard to the edge

e = (u, v) and the edge label L(u, v) in the tree. Node v is added

to Stratified-Sets by either assigning it to an new set (lines 3

and 9) or collapsing it to an existing set (line 13). Consider

the example input tree in Figure 3.2(a), node 3 and edge (2, 3)

are processed by Add(v, e). The resulting Stratified-Sets is in

Figure 3.2(b). Node 3 is assigned to a new set on layer 3. The

new set is then linked with the set containing node 2 on layer

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 47

2 respecting the fact that L(2, 3) = a1. Then, node 4 and edge

(3, 4) are processed. Node 4 is collapsed to the set on layer 2 that

contains node 2 respecting the facts that L(3, 4) = ā1 and node 4

is Dyck-reachable from node 2 (i.e., (2, 4) ∈ D). Formally, if the

edge label L(u, v) in the tree is an opening parenthesis ai ∈ A,

v is assigned to a new set indexed by curset in Stratified-

Sets. This new set is then linked with the set returned by

Find(u) on the upper layer as described by lines 2-5 . If the edge

label is a closing parenthesis āi ∈ Ā, we simply collapse node v

to the equivalence set that is connected via a matched opening

parenthesis ai ∈ A from u’s upper layer. The equivalence set

is indexed by Up[Find(u)][ai] as described by line 13. Lines 9-11

indicate that, for node u whose link node does not exist, we

assign node v to a new set indexed by curset and link the set

returned by Find(u) to the new set from the upper layer.

Note that the Up array used in Procedure 3 is indeed a map:

(Num → A) → Num, where Num denotes the domain of the

set numbers. For each set in Stratified-Sets, line 8 in Pro-

cedure 3 needs to find a particular edge ai from O(k) link edges

in Up[s], where s ∈ Num. The time taken to search such O(k)

edges depends on the actual implementation of the Up array. For

example, if the Up array stores such O(k) edges for each set s us-

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 48

ing a binary search tree, the lookup for an ai edge in Up[s] takes

O(log k) time as mentioned in Yuan and Eugster’s work [94]. In

our algorithm, we implement the Up array using the FDLL data

structure illustrated as Example 8 in Section 3.5.1, thus a lookup

takes expected O(1) time. The space required is O(m) since there

are m edges in a tree, where m = n − 1. Therefore, the time

complexity of Procedure 3 is O(1), and the space complexity of

the Up array is O(n).

3.4.2 Main Algorithm

This section presents the main algorithm. The key idea is to

operate on the linear-sized Stratified-Sets data structure to

build the all-pairs Dyck-CFL-reachability information during a

single tree walk.

The goal of our algorithm is to assign nodes u and v to the

same set in Stratified-Sets, for all (u, v) ∈ D. The overall

algorithm takes two steps:

(1) Initializing a leaf node: In this step, we pick an arbitrary

leaf node v from the tree and invoke the Init(v) procedure

to initialize the given node v.

(2) Processing each encountered edge: For each edge (u, v) with

label L(u, v) encountered during the tree walk, we process

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 49

Procedure 3: Add(v, e) to add a node v to Stratified-Sets according to
the directed edge e = (u, v).

1 if L(u, v) ∈ A then
2 let ai = L(u, v)
3 Set[v] = curset

4 Up[curset][ai] = Find (u)
5 curset ++

6 if L(u, v) ∈ Ā then
7 let āi = L(u, v)
8 if Up[Find(u)][ai] does not exist then
9 Set[v] = curset

10 Up[Find(u)][ai] = curset

11 curset ++

12 else
13 Set[v] = Up[Find(u)][ai]

the edge w.r.t. the edge label and insert the node v to

Stratified-Sets according to the Add(v, e) procedure.

The complete algorithm is shown as Algorithm 4. In the main

algorithm, lines 1-6 initialize the relevant data structures, and

lines 7-14 describe a standard depth-first search (DFS) starting

at node v. For a given bidirected tree T = (V,E) with n nodes,

DFS takes O(n) time. For every node v, the Add(v, e) procedure

takes O(1) time. The space required by Algorithm 4 depends on

the Stratified-Sets representation, which is essentially im-

plemented using the Up array. Therefore, the space complexity is

O(n).

Example 7 We consider the bidirected tree in Figure 3.2(a),

where reverse edges are omitted for brevity. Algorithm 4 outputs

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 50

7

6

5

4

3

2

1

8

109

11 12

13

a1

a1

ā1
ā1

a2

ā2

ā1

a1a1

ā1 ā1

ā3

(a) Input tree.

7

6

5

4

3

2

1 8

109

11 12

13

Layer 3

Layer 2

Layer 1

Layer 0

a3

a1 a2 a1 a1

a1

(b) Stratified-Sets representa-
tion.

Figure 3.2: A running example for Dyck-CFL-reachability on trees.

the Stratified-Sets in Figure 3.2(b). The Stratified-Sets

representation contains seven disjoint sets: {1, 5, 7, 8, 11, 12},

{2, 4}, {6}, {9}, {10}, {3} and {13}. The nodes in the same

set are Dyck-reachable from each other in the tree. Note that

the layer information is only used for providing a better expla-

nation. Algorithm 4 uses the Up array for finding a set from the

upper layer in Stratified-Sets.

After constructing the Stratified-Sets, any Dyck-CFL-reachability

query (u, v) can be answered in O(1) time by simply checking

whether the indices returned by Find(u) and Find(v) are the same.

Putting everything together, we have the following theorem.

Theorem 2 The bidirected Dyck-CFL-reachability problem on

trees can be pre-processed in O(n) time and O(n) space to answer

any online query in O(1) time.

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 51

Algorithm 4: Dyck-CFL-reachability algorithm on trees.

Input : Edge-labeled bidirected tree T = (V,E)
Output: the Stratified-Sets

1 initialize the Up array to be empty
2 foreach v ∈ V do
3 visited[v] = false
4 Set[v] = 0

5 stack.push(a leaf node v)
6 curset = 0
7 Init (v)
8 while stack is not empty do
9 v = stack.pop

10 if not visited[v] then
11 visited[v] = true
12 foreach unvisited neighbor u of v do
13 stack.push(u)
14 Add (u, e(v, u))

3.5 Dyck-CFL-Reachability Algorithm on Bidirected

Graphs

In this section, we study the Dyck-CFL-reachability problems on

bidirected graphs. Computing Dyck-CFL-reachability on graphs

is harder than that on trees because graphs may contain cycles.

Consequently, the algorithm introduced in Section 3.4 based on

the Stratified-Sets representation cannot be directly applied

to graphs.

Although Dyck-CFL-reachability on bidirected graphs is more

complicated, the Dyck-CFL-relation D shares the same equiva-

lence properties as for trees. For bidirected graphs, we utilize the

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 52

idea of edge merging to collapse the node pairs (u, v) ∈ D. For a

bidirected graph with n nodes and 2m edges, our algorithm pro-

cesses the given graph in O(n + m log m) time with O(n + m)

space, and can answer any Dyck-CFL-reachability query over

any pair of nodes (u, v) in O(1) time.

3.5.1 Basic Idea

As the näıve approach, given a bidirected graph G(V,E), our

algorithm works on the same directed graph G′(V ′, E ′) by re-

moving all edges labeled by closing parentheses from the orig-

inal graph, i.e., V ′ = V and ai〈u, v〉 ∈ E ′ iff ai〈u, v〉 ∈ E for

all labeled edges in E ′. Therefore, G′ has n nodes and m edges.

The key idea behind our algorithm is to collapse any node pair

(u, v) connected by a Dyck-path in the graph because such pairs

(u, v) are in the Dyck-CFL-relation D. As in the näıve approach,

E ′ may possibly contain multiple edges due to the collapsing be-

tween nodes.

To make the above idea more concrete, we consider the ex-

ample in Figure 3.3. Figure 3.3(a) shows the original path in

G which contains two non-trivial sets of nodes that are Dyck-

reachable from each other: {1, 5, 7} and {2, 4}. Figure 3.3(b)

shows the corresponding reduced path in G′. In such directed

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 53

(a) 1 2 3 4 5 6 7

(b) 1 2 3 4 5 6 7

(c) 1 2, 4 5, 7

3 6

(d) 1, 5, 7

2, 4

3

6

a1 a1 ā1 ā1 a1 ā1

ā1 ā1 a1 a1 ā1 a1
a1 a1 a1 a1 a1 a1

a1 a1

a1 a1 a1
a1

a1

Figure 3.3: A Dyck-path example.

cases, node 5 is “connected” to node 7 via node 6, and a1〈5, 6〉 =

a1〈7, 6〉. Since nodes 5 and 7 are Dyck-reachable from each other,

the two edges a1〈5, 6〉 and a1〈7, 6〉 should be merged to collapse

nodes 5 and 7 into a single representative node {5, 7} in Fig-

ure 3.3(c). We define a node like node 6 to be the merging node.

Formally, we have the following definition.

Definition 4 (Merging Node) If a node v ∈ V has at least

two incoming edges labeled by ai ∈ A, we say node v merges ai

edges. We define a node as a merging node iff it merges some

ai ∈ A edges.

Like the näıve algorithm in Algorithm 2, our main algorithm

fulfills the following two tasks:

(1) Merge edges for each merging node: For any merging node

in the graph G′, the algorithm finds the incoming nodes with

the same labeled edges, and merges the two edges to collapse

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 54

the nodes. In the path in Figure 3.3(b), nodes 3 and 6 are

two merging nodes. The relevant incoming edges should be

merged.

(2) Track the new merging nodes: During edge merging, new

merging nodes can be introduced into the graph G′. The al-

gorithm tracks all new merging nodes in order to perform an-

other edge merging. For the same example in Figure 3.3(c),

collapsing nodes 2 and 4 generates a new representative node

{2, 4}, which is also a merging node. Its corresponding edges

should also be merged. The final output is shown in Fig-

ure 3.3(d).

In the näıve approach, nodes x and y are arbitrarily picked on

line 9. Merging edges from y to x by enumerating all neighbors

of y exhaustively takes O(kn) time. Moreover, node tracking is

achieved by simply traversing all neighbors of node z on line 8,

which takes O(kn) time as well. When the given graph is sparse,

we can use additional data structures to improve the two tasks

of merging edges and tracking nodes. Next, we describe them in

detail.

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 55

Merging Edges

For the directed graph G′, edge merging in G′ picks a merg-

ing node z that has two incoming edges (x, z) and (y, z) with

ai〈x, z〉 = ai〈y, z〉, and collapses nodes x and y. Specifically, if

we choose to merge edge (y, z) to edge (x, z), all edges connecting

y and its neighbor w should be deleted from G′. Node w is made

a neighbor of x by inserting the relevant edges to G′. Finally,

node y is removed from G′, because it has been collapsed to x.

The order of edge merging is important. The näıve method

in Algorithm 2 performs edge merging by collapsing nodes x and

y arbitrarily with regard to the merging node z. If one adopts

this approach, the time complexity can be O(kn2). When the

graphs are sparse, it is possible to do edge merging faster. To this

end, we employ a technique that is similar to the weighted-union

heuristic (also known as the “union-by-size” heuristic) used in

the disjoint sets data structures [24]. Namely, for each edge

merging operation, we always collapse the node with a smaller

degree to the node with a larger degree. Our new method bounds

the total numbers of edge merging for each edge to O(log m). We

provide a detailed complexity analysis in Section 3.5.3.

Taking the näıve approach in Algorithm 2 as an example, we

discuss the process of edge merging. Specifically, our handling

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 56

z

x y

v w

(a) Before edge
merging.

z

x y

v w

(b) Col-
lapsing self
loops.

z

x y

v w

(c) Col-
lapsing all
neighbors.

z

x, y

v w

(d) After
edge merging.

Figure 3.4: Steps in edge merging.

of edge merging from node y to node x has three phases, as il-

lustrated in Figure 3.4. We assume that the degree of node x

is larger than that of y, and all irrelevant edges are omitted in

Figure 3.4. Figure 3.4(a) shows the original graph before edge

merging. Figure 3.4(b) illustrates the handling in the first phase.

If y has a self loop, the self loop is removed and added to x if x

does not already have one (lines 11-14 in Algorithm 2). Second,

we consider all neighbors of node y. As in Figure 3.4(c), for all

shared neighbors z of x and y, those edges between z and y are

removed; for those neighbors w that only belong to y, new edges

between w and x are inserted (lines 15-24 in Algorithm 2). Fi-

nally, Figure 3.4(d) shows that node y is removed from the graph

and degrees for relevant nodes in edge merging are updated.

Tracking Nodes

During edge merging, the in-degrees of merging nodes may change.

We need to explicitly maintain a list of merging nodes whose in-

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 57

1 2 . . . 4 3

2 4 . . . 1 3 Hash Map

Doubly-Linked List

Figure 3.5: The illustration of the FDLL data structure.

degrees w.r.t. an opening parenthesis are at least 2. This section

describes the design of our data structure to effectively maintain

this information.

In the näıve algorithm, tracking nodes is achieved using a

worklist W , which is typically implemented using a list. In our

improved algorithm, we uses a doubly-linked list (DLL) and a

hash map. We name the data structure Fast-doubly-linked-

list (FDLL). It is important to note that traditional list W

used by the näıve approach on line 25 takes O(n) time to find

an element while FDLL takes expected O(1) time. Figure 3.5

depicts an example FDLL. All elements in the FDLL are stored

using a DLL and a hash map. The hash map associates each

element with its position in the DLL, represented by arrows in

Figure 3.5, to help quickly locate every element in the DLL.

The insertion and pop operations on FDLL are nearly identical

to DLL (or list), both of which take O(1) time. Moreover, the

FDLL supports two additional operations in expected O(1) time:

• Query: Querying the membership of a particular element in

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 58

FDLL is the same as querying the relevant membership in

the hash map, which can be done in expected O(1) time.

• Deletion: According to the hash map, the position of the

element to be deleted can be found in expected O(1) time.

Thus removing the element at the specified position in the

DLL can also be done in O(1) time. Finally, the hash map

entry associated with that element is erased in O(1) time.

Example 8 In the tree algorithm, the Up array can be imple-

mented using FDLL to support the expected O(1) time lookup.

Recall that the Up array is indeed a map: (Num → A) → Num.

For each set s ∈ Num, we use an FDLL A[s] to store the set

of opening parentheses ai, such that there exists an ai labeled

edge connecting set s and the set from the upper layer. For each

ai ∈ A[s], we use another FDLL U [s i] to store the correspond-

ing set from the upper layer. For example, to look up an edge a3

of set 2, we query whether a3 ∈ A[2]. If such an a3 exists, U [2 3]

keeps the corresponding set number. The two lookups both take

expected O(1) time.

3.5.2 Main Algorithm

We now present our algorithm solving bidirected Dyck-CFL-

reachability on graphs in Algorithm 5, combining the ideas of

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 59

merging edges and tracking nodes.

Before delving into the main algorithm, we first illustrate the

use of FDLL in our main algorithm. For each node v in the input

graph G′ = (V ′, E ′), the set of opening parentheses of v’s incom-

ing edges is represented using an FDLL, denoted as Ain[v]. For

each ai ∈ Ain[v], we use the FDLL In[v i] to store all v’s incom-

ing neighbors. We denote the size of In[v i] as In[v i].size(). Node

v merges edge ai iff In[v i].size() > 1. We represent Out[v i] and

Aout[v] similarly. Finally, the worklist FDLLw is also represented

using an FDLL.

Algorithm 5 uses the array D̂[v] to represent the total degree

of node v, which is initialized to v’s degree in the original graph.

Notations eq nodes[v] and Set[v] are defined in the same way as

the näıve approach. The functioning of the algorithm proceeds

as follows. On line 1, the original bidirected graph G is pre-

processed to obtain the directed graph G′ = (V ′, E ′). From

lines 2-5, the equivalence set Eq nodes[v] is initialized with node v

and the FDLLw is initialized with v i indicating node v merges

ai. The FDLLw in the main algorithm is used to implement

the idea of node tracking. The main algorithm then proceeds to

handle edge merging as follows:

• Lines 7-11: The algorithm pops one z i from the FDLLw,

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 60

then chooses its two neighbors x and y for edge merging.

Specifically, node y with a smaller total degree is collapsed

to node x with a larger total degree.

• Lines 12-18: The self loop on node y is handled as described

in Figure 3.4(b). During edge merging, if a node v becomes

a non-merging node for ai (i.e., In[v i].size() < 2), v i is

removed from the FDLLw. Similarly, when node v becomes

a merging node that merges ai edges, v i is inserted to the

FDLLw. Note that when an edge is inserted/removed from

E ′, all of In[v i], Ain[v], Out[v i] and Aout[v] need to be updated

accordingly.

• Lines 19-31: All incoming and outgoing neighbors of y are

handled as described in Figure 3.4(c). The update on FDLLw

for merging nodes is similar to the handling of self loop.

• Line 32: Node y is removed from V ′. Note that we do not

need to remove z i because it was once w i.

The edge merging ends when the FDLLw is empty, i.e., there

are no merging nodes in the final graph. Lines 33-35 indicate

that all nodes u in the equivalence set Eq nodes[v] are enumerated

to associate Set[u] with v.

After the main algorithm terminates, Set[v] stores the equiv-

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 61

(a) 1

2

3

4

5

6

(b) 1

2, 4

3

5

6

(c) 1

2, 4, 6

3
5

(d) 1 2, 3, 4, 6 5 (e) 1, 2, 3, 4, 6 5

Figure 3.6: A running example for bidirected Dyck-CFL-reachability on graphs.

alence set number that node v belongs to. Similar to the tree

case, any Dyck-CFL-reachability query (u, v) can be answered

in O(1) time by simply checking the equivalence set numbers of

nodes u and v.

Example 9 Figure 3.6 shows an example. All edges are labeled

by a1 ∈ A. The original edges labeled by ā1 ∈ Ā are removed first.

Nodes 3 and 5 are two merging nodes. In the first iteration, nodes

2 and 4 are collapsed by edge merging. Then node 6 is collapsed

as well. Finally, node 1 is collapsed due to its self loop in the

graph. In the final graph, all of the nodes in the original graph

are distributed into two disjoint sets.

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 62

Algorithm 5: Dyck-CFL-reachability algorithm on graphs.

Input : Edge-labeled bidirected graph G = (V,E)
Output: Set[v] for all v ∈ V

1 transform the input graph G to G′ = (V ′, E′)
2 foreach v ∈ V ′ do
3 Eq nodes[v] = {v}
4 foreach ai ∈ Ain[v] do
5 add v i to FDLLw if In[v i].size() > 1

6 while FDLLw 6= ∅ do
7 let z i be the front item from FDLLw
8 let x and y be two front nodes from In[z i]

9 let x denote the node such that D̂[x] > D̂[y]

10 D̂[x] = D̂[x] + D̂[y]
11 Eq nodes[x] = Eq nodes[y] ∪ Eq nodes[x]
12 foreach ai ∈ Ain[y] do
13 if ai〈y, y〉 ∈ E′ then
14 if ai〈x, x〉 /∈ E′ then
15 add ai〈x, x〉 to E′

16 add x i to FDLLw if x i /∈ FDLLw and In[x i].size() > 1

17 remove ai〈y, y〉 from E′

18 remove y i from FDLLw if y i ∈ FDLLw and In[y i].size() < 2

19 foreach ai ∈ Ain[y] do
20 foreach w ∈ In[y i] do
21 if ai〈w, x〉 /∈ E′ then
22 add ai〈w, x〉 to E′

23 add x i to FDLLw if x i /∈ FDLLw and In[x i].size() > 1

24 remove ai〈w, y〉 from E′

25 remove y i from FDLLw if y i ∈ FDLLw and In[y i].size() < 2

26 foreach ai ∈ Aout[y] do
27 foreach w ∈ Out[y i] do
28 if ai〈x,w〉 /∈ E′ then
29 add ai〈x,w〉 to E′

30 remove ai〈y, w〉 from E′

31 remove w i from FDLLw if w i ∈ FDLLw and In[w i].size() < 2

32 remove y from V ′

33 foreach v ∈ V ′ do
34 foreach u ∈ Eq nodes[v] do
35 Set[u] = v

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 63

3.5.3 Algorithm Correctness and Complexity Analysis

This section discusses the correctness and complexity of our pro-

posed algorithm. First, we establish its correctness.

Theorem 3 (Correctness) Algorithm 5 correctly finds all Dyck-

paths in the input graph.

Proof. It is clear that any Dyck-path reported by Algorithm 5

is indeed a Dyck-path due to the observed equivalence property

(Lemma 1). Thus, our proof focuses on the other direction, that

is Algorithm 5 finds all Dyck-paths in the input graph.

Any trivial Dyck-path generated by rule S → ε is handled

correctly, because every node v in the graph is marked as Dyck-

reachable from itself due to line 3 in Algorithm 5. Dyck grammar

essentially generates the properly matched parentheses. There-

fore, the length of any non-trivial Dyck-path in the graph is even.

We prove by induction on the length |p| of any non-trivial Dyck-

path.

Base case. |p| = 2. Let the Dyck-path be p = v1v2v3, with the

realized string R(p) = L(v1, v2)L(v2, v3) = aiāi. Because

the graph is bidirected, we have L(v3, v2) = L(v1, v2) = ai.

Nodes v1 and v3 are collapsed due to the merging node v2.

Inductive step. Suppose Algorithm 5 correctly finds all non-

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 64

trivial Dyck-paths of length |p| in the graph. According

to the Dyck grammar, any non-trivial Dyck-path of length

|p|+ 2 is generated by the following two rules:

• S → aiSāi indicates that the new S-path is gener-

ated by prepending an open parenthesis and append-

ing by a matching closing parenthesis. Let the path be

p = v1v2 . . . v3v4, where L(v1, v2) = ai and L(v3, v4) = āi.

The realized string R(v2 . . . v3) = S indicates that nodes

v2 and v3 are Dyck-reachable, where the Dyck-path join-

ing v2 and v3 is of length |p|. According to the induction

hypothesis, they have been collapsed into a single rep-

resentative node. Such a node is the merging node for

v1 and v4. Thus, v1 and v4 are collapsed according to

Algorithm 5.

• S → SS indicates that the new S-path is composed of

two S-paths. Let the path be p = v1 . . . v2 . . . v3, where

R(v1 . . . v2) = R(v2 . . . v3) = S. Note that the length of

any non-trivial Dyck-path is at least 2. Since the new

S-path is of length |p| + 2, the lengths of both path

v1, . . . , v2 and path v2, . . . , v3 are less than or equal to

|p|. According to the induction hypothesis, both v1, v2

and v2, v3 are collapsed into a single representative node.

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 65

As a result, v1 and v3 are collapsed into the same repre-

sentation node as well.

2

Next we analyze the complexity of Algorithm 5. Note that

the total degree D̂[v] used in our algorithm is different from the

degree D[v] of node v respecting the fact that the total degree

D̂[v] admits duplicated edges. For example, in Figure 3.4(c),

D̂[x] = 4+2 = 6, but D[x] = 5, because edge (y, z) is duplicated

with (x, z) according to the final representative node {x, y} in

Figure 3.4(d). Therefore, the total degree D̂[v] never decreases

during edge merging. Our algorithm processes the merging node

z and collapses its neighbor y with a smaller D̂[y] to node x

with a larger D̂[x]. Nodes y and x are collapsed into a single

representative node {x, y}. As a result, the total degree of y after

merging is the same as the total degree of x according to line 10,

namely, D̂[x] = D̂[x] + D̂[y]. On line 9, we have D̂[x] > D̂[y].

Combining the analysis of the two lines, the following lemma is

immediate:

Lemma 2 For each edge merging in Algorithm 5, D̂[y] is dou-

bled.

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 66

Let m denote the number of edges in graph G′, i.e., 2m =∑
v∈V D[v]. Due to the duplicated edges, D[v] may decrease

during edge merging. Similarly, m̂ denotes the total number of

edges in graph G′ w.r.t. D̂[v] that admits duplicated edges, i.e.,

m̂ =
∑

v∈V D̂[v]. For each edge (x, z) in graph G′, we say it

is “moved” if either the total degree D̂[x] or D̂[z] is doubled

according to Lemma 2. For all v ∈ V , we have D̂[v] 6 m̂ 6

2m, because in the worst case, all nodes are collapsed into a

single representative node (with m duplicated edges) in the final

graph. Combined with Lemma 2, an edge is “moved” at most

(log D̂[x] + log D̂[z] 6 2 log 2m) times. The “while” loop on

line 6 in Algorithm 5 takes time proportional to the number of

times that an edge is “moved”. Therefore, the total running time

for the “while” loop is O(m log m). For lines 33-35, it takes O(n)

time to enumerate all nodes u in the equivalence set Eq nodes[v]

and to associate Set[u] with v. Therefore, the time complexity of

our algorithm is O(n+m log m). At the beginning, each node is

associated with two FDLLs In[v i] and Out[v i]. In each iteration

of edge merging, there is one node removed from G′, decreasing

the number of edges m in G′. As a result, O(n + m) space is

required for processing the graph. Putting all these together, we

have the following theorem:

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 67

Theorem 4 Algorithm 5 pre-processes the input graph in O(n+

m log m) time and O(n + m) space to answer any online bidi-

rected Dyck-CFL-reachability query in O(1) time.

In practice, since the graphs in client analyses are typically

sparse, Algorithm 5 performs in O(n log n) time. When the

graphs are dense, we can use the näıve approach in Algorithm 2

for pre-processing. As a result, we have the following theorem:

Theorem 5 The bidirected Dyck-CFL-reachability problem on

graphs can be pre-processed in O(min{kn2, n + m log m}) time

and O(n+m) space to answer any online query in O(1) time.

3.6 Dyck-CFL-Reachability Algorithm

In this section, we focus on the general Dyck-CFL-Reachability

problem. Similar to the bidirected counterpart described in Sec-

tions 3.4 and 3.5, given a digraph G = (V,E), we also con-

sider the binary Dyck-CFL-relation D̃ over V × V . Node v ∈ V

is Dyck-reachable from node u ∈ V iff (u, v) ∈ D̃. Note that

the directed Dyck-CFL-relation D̃ is different from the bidirected

Dyck-CFL-relation D since D̃ is not symmetric. Consequently,

the directed Dyck-CFL-relation D̃ is not an equivalence relation

and the two algorithms described in ddsd can not be applied.

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 68

3.6.1 Basic Idea

We revisit the Dyck grammar to illustrate the basic idea of the

Dyck-CFL-Reachability algorithm. The Dyck grammar actually

consists of two kinds of rules:

S → SS | ε (3.1)

S → a1Sā1 | ... | akSāk (3.2)

where S is the start symbol and ε is the empty string. We note

that rules 3.1 describe the transitivity and reflexivity on D̃. It

is fairly straightforward to realize that the Dyck-CFL-relation D̃

generated by rules 3.1 can be thought of as the standard reacha-

bility relation in a directed graph, i.e., node v is reachable from

itself and for all nodes x, y, z ∈ V , whenever y is reachable from x

and z is reachable from y then z is reachable from x. As a result,

maintaining the Dyck-CFL-relation D̃ generated by rules 3.1 is

exactly the same as maintaining the transitive closure of a di-

rected graph. Rules 3.2 depict the pairs of matched parentheses

in D̃. For matching parentheses, we can use a dynamic program-

ming style algorithm to compute all pairs of opening parentheses

and their matched closing parentheses, which is quite similar to

the traditional CFL-reachability algorithm.

To sum up, the basic idea of our Dyck-CFL-Reachability al-

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 69

gorithm is to employ a dynamic programming style algorithm

for matching parentheses (handling rules 3.2). For each sum-

mary edge (u, S, v), our algorithm searches the incoming opening

parentheses of u and the matched outgoing closing parentheses

of v to generate new S-edges. Since the parentheses considered

by our algorithm are exactly the edges in the original graph, the

running time required for matching parentheses is O(mn), where

m and n represent the number of edges and nodes in the given

graph. Then we adopt an efficient data structure for maintain-

ing transitive closure based on all S-edges (handling rules 3.1).

The data structure explicitly maintains the transitive closure in

O(n) amortized time [43]. Let S denote the number of S-edges

in the final graph. The running time required for maintaining

transitive closure is O(Sn). As a result, the whole algorithm

computes the all-pairs Dyck-CFL-Reachability in O(n(m + S))

time.

3.6.2 Maintaining Transitive Closure

Given a directed graph G = (V,E), the transitive closure of G

is also a directed graph with the same set of nodes V but has an

directed edge from node u to v iff there is a path from u to v in G.

In this section, we review an existing incremental algorithm for

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 70

Procedure 6: Init() to initialize the key data structures.

1 for i← 1 to n do
2 initialize T (i) as an empty tree
3 for j ← 1 to n do mij ← 0

maintaining the transitive closure of a directed graph a directed

graph [43]. The incremental algorithm plays a pivotal role in

our Dyck-CFL-Reachability algorithm. It starts with an empty

graph that undergoes a sequence of edges insertions. Specifically,

it permits the following operations:

• Insert(u, v): insert a directed edge between nodes u and v

in the graph.

• Query(u, v): check whether v is reachable from u in the

graph.

Note that the directed edges concerned with the insertion oper-

ation are completely arbitrary. The incremental algorithm sup-

ports each edge insertion in O(n) amortized time and each query

in O(1) time. It also explicitly maintains the transitive closure,

which yields an O(n2) space complexity.

Key Data Structures

The incremental algorithm operates on a matrix M representing

the transitive closure and spanning trees associated with each

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 71

node. We give the necessary definitions as follows.

A directed graph is called a directed acyclic graph (DAG) if it

does not contain any cycle. Given a directed graph G = (V,E),

a spanning tree T (x) rooted at node x ∈ V is a DAG, such that:

(1) the root node x ∈ V does not have any incoming edge;

(2) each node n ∈ T (x) \ {x} has exactly one incoming edge;

(3) there is a unique path from root x to n ∈ T (x) \ {x} iff n is

reachable from x in G.

The incremental algorithm also maintains an n × n matrix M ,

each entry mij is defined as follows:

mij =


1, if node j is reachable from i in G,

0, otherwise.

The matrix M explicitly represents the adjacency matrix of the

transitive closure of G.

The key data structures are initialized by Procedure 6. The

running time required for the init() procedure is clearly O(n2).

However, the time complexity can be easily reduced to O(n)

by initializing each matrix entry mij the first time when it is

accessed [5, pp. 71].

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 72

1

2

3

4

5

6

7

(a) The input graph.

T (1)

1

2 4

7

T (2)

2

T (3)

3

2

T (4)

4

7

T (5)

5

6 4

3 7

2

T (6)

6

3

2

T (7)

7

(b) The spanning trees.

Figure 3.7: Example graphs illustrating a directed graph and its corresponding
bidirected graph.

... i j

. . .

...

. . .

. . .

x T (j) \ {j}

Figure 3.8: The reachability information after adding a new edge (i, j).

Example 10 We show an example in Figure 3.7. The graph

is shown in Figure 3.7(a), and the spanning trees are shown in

Figure 3.7(b).

Main Procedures

We precede to give the main procedures for maintaining the tran-

sitive closure. Procedure 7 describes the procedure for handling

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 73

(x)

x

(u)

i

(v)

(j)

j

(w)

. . .

...

. . .

. . .

T (j) \ {j}

(a) Calling procedure Meld().

(x)

x i

(u)

(j)

j

(v)

. . .

...

(w)

. . .

. . .

T (j) \ {j}

(b) Recursively calling procedure Meld().

Figure 3.9: Situations calling recursive procedure Meld().

the insertion operation. Let the directed edge considered be

(i, j). The edge provides new reachability information only if

node j is not previously reachable from i, as indicated by line 1.

Figure 3.8 shows the new reachability information introduced

by edge (i, j), i.e., each node x that previously reaches i should

reach all nodes in the spanning tree associated with j. In Pro-

cedure 7, lines 2-3 searches all such nodes x and updates the

reachability information only if x does not previous reaches j,

i.e., mxi 6= 0 and mxj == 0.

The updating of reachability information is handled by pro-

cedure Meld() shown in Procedure 8. The new reachability in-

formation between node x and n ∈ T (j) is updated by pruning

a unique copy of T (j) and inserting it into T (x). Specifically,

Procedure 8 involves the following two steps:

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 74

Procedure 7: Add(i, j) to insert an edge (i, j).

1 if mij == 0 then // there are no previous path from i to j
2 for x← 1 to n do
3 if mxi 6= 0 and mxj == 0 then

4 // the edge (i, j) gives rise to a new path from x to j
5 Meld (x, j, i, j)

(1) recursively pruning a unique copy of T (j) by eliminating the

nodes that are already in T (x) (lines 4-6);

(2) linking the nodes in the unique copy of T (j) to T (x) and

updating the reachability matrix (lines 1-3).

Note that line 3 in Procedure 8 inserts the summary edge (x, S, v)

to the graph G and the worklist W used by the Dyck-CFL-

Reachability algorithm. Figure 3.9 further illustrates the func-

tionality of the recursive procedure Meld(). Given an directed

edge (i, j), the procedure add(i, j) calls Meld(x, j, i, j). In the sub-

sequent recursive calls, u represents the parent of v in T (j), and

every child w of v is considered. If node w is already reachable

from x (i.e., mxw 6= 0), the Meld() procedure returns since all chil-

dren of w are reachable from x (i.e., they are also the children

of x in T (x)).

Example 11 Figure 3.10 shows an example of updating the reach-

ability information after inserting edge (2, 5) in Figure 3.7(a).

The first row shows the spanning trees before inserting edge (2, 5).

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 75

Procedure 8: Meld(x, j, u, v) to merge trees.

1 insert v in T (x) as a child of u
2 mxv ← 1
3 insert (x, S, v) to G and to W
4 foreach child w of v ∈ T (j) do
5 if mxw == 0 then
6 Meld (x, j, v, w) // update by means of

T (1)

1

2 4

7

T (2)

2

T (3)

3

2

T (5)

5

6 4

3 7

2

T (6)

6

3

2

T2(5)

5

6 4

3 7

T1(5)

5

6

3

T3(5)

5

6 4

7

T6(5)

5

4

7

T (1)

1

2 4

75

6

3

T (2)

2

5

6 4

3 7

T (3)

3

2

5

6 4

7

T (5)

5

6 4

3 7

2

T (6)

6

3

2

5

4 7

Figure 3.10: Updating spanning trees.

The second row shows the pruned spanning tree Tx(5), where

node x previously reach node 2 and all nodes v ∈ Tx(5) are not

in T (x). Finally, the last row shows the spanning trees after the

edge insertion.

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 76

3.6.3 Matching Parentheses

In this section, we describe our Dyck-CFL-Reachability algo-

rithm. The Dyck language contains k kinds of parentheses and

is generated by a Dyck grammar with the start symbol S. Our

algorithm takes a graph whose edges are labeled by parentheses

as input and computes the all-pairs Dyck-CFL-reachability in

O(n(m + S)) time, where S, m and n represent the number of

S-paths in the final graph, the number of edges and nodes in the

original graph respectively.

Our algorithm follows the popular dynamic programming style [70,

93] for solving all-pairs CFL-reachability. As aforementioned,

our algorithm generates the new matched parentheses (i.e., rules 3.2)

by searching the incoming opening parentheses on node u and the

matched closing outgoing parentheses on node v for each sum-

mary (u, S, v) in the graph. Then our algorithm concatenates

the existing matched parentheses (i.e., rules 3.1) by adopting

the data structures for maintaining the transitive closure on all

S-paths.

Generating New Matched Parentheses

Three kinds of summary edges are considered by our algorithm,

i.e., the opening parentheses edges (u,Ai, v), the closing paren-

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 77

theses edges (u, Āi, v) and the Dyck -paths (u, S, v). At the be-

ginning, each labeled edge in the given graph is transformed into

a corresponding summary edge (i.e., (u, ai, v) becomes (u,Ai, v)

and (u, āi, v) becomes (u, Āi, v)).

A worklist W is used to maintain all summary edges. The

main algorithm processes all summary edges in W , detailed as

follows:

• Opening parentheses edges (u,Ai, v): the main algorithm

searches all outgoing neighbors w of v, such that (v, āi, u)

exists in the original graph. Then new summary edges repre-

senting the Dyck -paths (u, S, w) are inserted to the worklist

W ;

• Closing parentheses edges (u, Āi, v): similarly, the main al-

gorithm searches all incoming neighbors w of u, such that

(w, ai, u) exists in the original graph. Then new summary

edges representing the Dyck -paths (w, S, v) are inserted to

the worklist W ;

• Dyck-paths (u, S, v): the main algorithm searches all incom-

ing neighbors w of u, such that (w, ai, u) exists in the original

graph. Then new summary edges (w,Ai, v) representing the

opening parentheses are inserted to the worklist W . Simi-

larly, the main algorithm also search all outgoing neighbors

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 78

w of v to insert new closing parentheses edges (u, Āi, w) to

W .

To sum up, when a summary edge representing opening or

closing parenthesis is popped from W , the new Dyck -path rep-

resenting the new matched parentheses is generated with respect

to rules 3.2 in the Dyck grammar. When a Dyck -path (u, S, v) is

popped from W , the main algorithm propagates the parentheses

from nodes u and v by inserting the corresponding new summary

edges into W .

Concatenating Existing Matched Parentheses

Note that the current algorithm discussed so far does not han-

dle the transitivity and reflexivity on Dyck -path described by

rules 3.1. Transitional CFL-reachability algorithm [70, 93] han-

dles them by searching all incoming and outgoing S-edges for

each summary edge popped from the worklist W . If one adopt

the same strategy, the time complexity of the main algorithm is

O(n3). Next, we introduce an improved strategy by using the

incremental algorithm discussed in Section 3.6.2 for maintaining

the transitive closure on all S-edges.

To apply the incremental algorithm, we need to modify the

handling of summary edges in the current algorithm. Specifi-

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 79

cally, for each newly generated S-edges described in Section 3.6.3

(i.e., during the processing of the summary edges representing

opening and closing parentheses), we insert them into the data

structures maintained by the incremental algorithm discussed in

Section 3.6.2. Namely, the transitive closure maintained by the

incremental algorithm consists of all S-edges in the input graph.

The data structures then return all new S-edges according to the

transitivity and insert them into the worklist W as described on

line 3 in Procedure 8.

Main Algorithm

We now present our Dyck-CFL-Reachability algorithm. Given

an edge-labeled graph, the algorithm computes the set of all

Dyck -paths in the graph.

Algorithm 9 shows the main algorithm. It is a worklist algo-

rithm that propagates the Dyck-CFL-Reachability information

among summary edges. Lines 1-3 initialize the worklist W with

all summary edges derived from the parentheses original graph.

The summary edges are also inserted to the original graph. For

each summary edge (i, B, j) popped from W , the algorithm pro-

cesses it according to Sections 3.6.3 and 3.6.3 as follows:

• Lines 6-10: the algorithm handles the summary edges rep-

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 80

Algorithm 9: Dyck-CFL-Reachability Algorithm.

Input : Edge-labeled directed graph G = (V,E);
Output: the set of summary edges;

1 initialize W to be empty
2 foreach (i, ai, j) ∈ E do insert (i, Ai, j) to G and to W
3 foreach (i, āi, j) ∈ E do insert (i, Āi, j) to G and to W

4 while W 6= ∅ do
5 (i, B, j)← select-from(W)
6 if B == Āi then
7 foreach k ∈ In(i, ai) do
8 if (k, S, j) 6∈ G then
9 Add (k, j)

10 insert (k, S, j) to G and to W

11 if B == Ai then
12 foreach k ∈ Out(j, āi) do
13 if (i, S, k) 6∈ G then
14 Add (k, j)
15 insert (i, S, k) to G and to W

16 if B == S then
17 foreach k ∈ In(i, ai) do
18 if (k,Ai, j) 6∈ G then
19 insert (k,Ai, j) to G and to W

20 foreach k ∈ Out(j, āi) do
21 if (i, Āi, k) 6∈ G then
22 insert (i, Āi, k) to G and to W

resenting closing parentheses (i.e., (i, Āi, j)). All incoming

neighbors k of node i with summary edge (k,Ai, i) are con-

sidered. If a new Dyck -path (i.e., (k, S, j)) is generated, it

is then inserted to the graph and the data structure.

• Lines 11-15: the algorithm handles the summary edges rep-

resenting opening parentheses, which similar to the handling

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 81

of the closing parentheses.

• Lines 16-22: the algorithm handles all generated S-edges

(i, S, j). Lines 17-19 search all incoming opening paren-

theses (k, ai, i), and insert the summary edge (k,Ai, j) rep-

resenting an opening parenthesis to the graph. Similarly,

lines 20-22 handles the closing parentheses.

Algorithm 9 terminates when there is no new S-edge to be

inserted. To query if a node j is Dyck -reachable from node i, we

can simply test whether the summary edge (i, S, j) exists.

3.6.4 Algorithm Correctness and Complexity Analysis

The correctness of Algorithm 9 can be established w.r.t. the

Dyck grammar. Lines 6-15 match every parenthesis depicted

in rule 3.2. Moreover, by calling to the Add() procedure on lines 9

and 14, all new transitive S-edges depicted in rule 3.1 are cor-

rectly generated and inserted into the graph. On the other hand,

lines 16-22 generate new summary edges representing the open-

ing and closing parentheses for matching w.r.t. rule 3.2, i.e., for

each S-edge (i, S, j), all summary edges (k,Ai, j) and (k, Āi, j)

are inserted to the graph where Ai represents aiS and Āi repre-

sents Sāi respectively.

Then, we analyze the complexity of Algorithm 9. For each

CHAPTER 3. FAST DYCK-CFL-REACHABILITY ALGORITHMS 82

summary (i, B, j) popped from the worklist W , the foreach

loops at lines 7, 12, 17 and 20 search exactly the incoming and

outgoing edges in the original graph. For a graph with n nodes

and m edges, the algorithm takes O(mn) time for searching. The

Add() procedure is called at lines 9 and 14 iff there is a new S-edge

generated. As a result, the procedure Add() is called for |S| times

where |S| denotes the number of S-edges in the final graph. The

procedures Add() and Meld() perform the same work as the previ-

ous dynamic graph reachability algorithm [43]. Therefore, the

amortized running time for each edge insertion (i.e., each call

to Add()) is O(n). Combined the analysis, the running time of

Algorithm 9 is O(n(m + S)). The space complexity is clearly

O(n2) due to the use of the reachability matrix. Finally, we have

the following theorem:

Theorem 6 The general Dyck-CFL-reachability problem on graphs

can be pre-processed in O(n(m+S)) time and O(n2) space to an-

swer any online query in O(1) time, where S is the number of

Dyck-paths in the final graph.

2 End of chapter.

Chapter 4

Application: Scaling an Alias

Analysis for Java

To demonstrate the practical applicability of our fast Dyck-CFL-

reachability algorithms, we leverage a recent demand-driven context-

sensitive alias analysis for Java [92] formulated using CFL-reachability.

Dyck-CFL-reachability is used to formulate its context-insensitive

variant. The analysis is demand-driven in the sense that it solves

the single-source-single-target Dyck-CFL-reachability problem.

We show that our fast algorithms for all-pairs Dyck-CFL-reachability

applies directly to this context-insensitive alias analysis.

83

CHAPTER 4. APPLICATION: SCALING AN ALIAS ANALYSIS FOR JAVA84

4.1 Demand-driven Alias Analysis for Java

4.1.1 Symbolic Points-to Graph

The underlying graph representation of the alias analysis is called

the Symbolic Points-to Graph (SPG) [90, 92]. It extends the

locally-resolved points-to graph representation [80] by introduc-

ing additional symbolic nodes as placeholders for abstract heap

objects. The SPG contains three kinds of nodes: variable nodes

v ∈ V representing variables, allocation nodes o ∈ O representing

allocations for new expressions, and symbolic nodes s ∈ S repre-

senting abstract heap objects. It also consists of the following

three types of edges:

• edges v → oi ∈ V ×O to represent that variable v points to

object oi;

• edges v → si ∈ V × S to represent that variable v points to

an abstract heap object.

• edges oi
f−→ oj ∈ (O∪S)×Fields× (O∪S) to represent that

field f of oi points to oj.

A Java program’s SPG is constructed in three steps. First,

symbolic nodes are introduced for each procedure parameter,

method invocation and field access. Second, the set of abstract

CHAPTER 4. APPLICATION: SCALING AN ALIAS ANALYSIS FOR JAVA85

x = w.f;

w.f = y;

u = x.g;

v = y.g;

v = w.g;

(a) A code snip-
pet.

u x w y v

u x w y v
g f f g

g

(b) Its SPG.

Figure 4.1: An example of alias analysis with the SPG.

heap locations O∪S that a variable may point to1 is computed.

The relevant points-to edges are inserted to the SPG. Third, the

field access edges oi
f−→ oj are added with regard to field loads

and stores. The SPG also includes the barred edges (i.e. oj
f̄−→ oi

edges) implicitly.

4.1.2 Context-Insensitive Alias Analysis

The context-insensitive alias analysis computes the aliasing rela-

tion over variables within a method. In the analysis, the method

invocation edges (i.e., entry and exit edges) are of no interest.

Specifically, the memory aliasing between the allocation or sym-

bolic nodes that variable nodes x and y may points-to indicates

the aliasing relation between x and y. The memory alias rela-

tion defined in [92] over (O ∪ S) × (O ∪ S) is described by the
1In the original work that using SPG [90, 92], the flowsTo edges are used. A flowsTo edge is

obtained on the flow graph by computing a regular language reachability. An abstract heap object
flowsTo a variable if it is in the points-to set of that variable.

CHAPTER 4. APPLICATION: SCALING AN ALIAS ANALYSIS FOR JAVA86

following context-free grammar:

memAlias → f̄1 memAlias f1 | . . . | f̄k memAlias fk

| memAlias memAlias | ε

Note that the alias analysis based on memAlias reachability is

a simplification of the alias reachability presented by Sridharan

et al. [78, 80]. The field edges between abstract symbolic nodes

in an SPG approximate the field loads and stores in the flow

graph [78, 80]. The approximation may lead spurious aliasing as

detailed by Xu et al. [90, Section 4]. However, the experimental

results show that the overall performance is better than that

proposed by Sridharan et al. [78, 80] in practice. The precision

loss is insignificant enough compared to the performance gains.

Example 12 Consider the example in Figure 4.1. The Java

code snippet (left) and its SPG (right) are shown. In the SPG,

the boxes denote symbolic nodes, and the circles denote variable

nodes. The reverse edges (a.k.a. barred edges) are omitted for

brevity. Note that the Dyck-CFL-reachability formulation used

in the client alias analysis represents the barred edges as the

opening parentheses. There are two pairs of memAlias nodes:

(x, y) and (u, v), because the realized strings of the two joining

paths are “f̄f” and “ḡf̄fg” respectively, which can be generated

CHAPTER 4. APPLICATION: SCALING AN ALIAS ANALYSIS FOR JAVA87

from the memAlias grammar. However, the node pair (x, v) is

not memAlias because the realized strings of two possible joining

paths are “f̄ g” and “f̄fg”, such that the parentheses along the

paths are not properly matched.

4.1.3 Applying Our Fast Algorithms

Since the CFL used to describe the context-insensitive memory

aliasing is a Dyck-CFL with k kinds of parentheses, the two

Dyck-CFL-reachability algorithms presented in this paper can

be directly applied. Note also that this alias analysis is demand-

driven in the sense that the original algorithm solves the “single-

source-single-target” Dyck-CFL-reachability problem, because solv-

ing “all-pairs” reachability is considered computationally much

more expensive in these analyses. Both our algorithms are in-

tended to solve the “all-pairs” Dyck-CFL-reachability problem.

Next, we show how our “all-pairs” algorithm performs in prac-

tice.

4.2 Empirical Evaluation

In this section, we compare the traditional CFL-reachability al-

gorithm with our proposed algorithm for solving the all-pairs

Dyck-CFL-reachability problem on graphs for standard, real-

CHAPTER 4. APPLICATION: SCALING AN ALIAS ANALYSIS FOR JAVA88

world Java benchmarks. The input graphs are generated from

the context-insensitive alias analysis for Java described in Sec-

tion 4.1. The results show that our algorithm outperforms the

traditional CFL-reachability algorithm by several orders of mag-

nitude.

4.2.1 Experimental Setup

Benchmark Selection. The benchmark suite used in our evalua-

tion is the DaCapo suite [2]. We include the entire DaCapo-2006-

10-MR2 suite which consists of 11 benchmarks with five addi-

tional large benchmarks form the DaCapo-9.12bach suite. Ta-

ble 4.1 describes the benchmarks. For each benchmark, columns

2 and 3 list the numbers of methods and statements in interme-

diate representations of the underlying analysis infrastructure,

respectively.

Graph Collection. We have used the same code as Xu et al. [90]

and Yan et al. [92] to generate the Symbolic Points-to Graphs

(SPGs). The analysis is built on top of the Soot program analysis

framework for Java [84].

All benchmarks are processed with the nightly-build version2

of Soot. To measure scalability, we use the latest release of JDK
2As of 2012-10-23.

CHAPTER 4. APPLICATION: SCALING AN ALIAS ANALYSIS FOR JAVA89

1.6 (version 1.6u37) as the base analysis library for Soot. The

five large benchmarks from DaCapo-9.12bach are processed with

the help of Tamiflex [14] for reflection resolution.

Implementation. We implemented the proposed graph algorithm

to compare with the traditional CFL-reachability algorithm. Both

algorithms are implemented in C++ with extensive use of the

Standard Template Library (STL). The FDLL data structure

described in Section 3.5 is implemented using STL unordered map

and list. The underlying graphs are represented using adjacency

lists implemented with FDLL.

Our code is compiled using gcc-4.6.3 with the “-O2” optimiza-

tion flag. Both algorithms take the same SPG as input. Their

outputs are verified to ensure the consistency and correctness .

All experiments are conducted on a Dell Optiplex 780 machine

with Intel Core2 Quad Q9650 CPU and 8 GB RAM, running

Ubuntu-12.04.

4.2.2 Time and Memory Consumption

Table 4.2 shows the performance comparison of the two algo-

rithms over our benchmark set. Column 4 and 5 list the num-

bers of nodes and edges in each SPG respectively. Column 6

lists the aliasing pair counts. Column 7 shows the number of

CHAPTER 4. APPLICATION: SCALING AN ALIAS ANALYSIS FOR JAVA90

different kinds of parentheses (i.e., the size of each Dyck gram-

mar) in each SPG. The remaining columns list the time and

memory consumption of the traditional CFL-reachability algo-

rithm versus that of our algorithm. We denote our algorithm as

fast-dyck.

The results indicate that our algorithm significantly improves

over the traditional CFL-reachability algorithm. We observe

that the running time of our algorithm grows very slowly w.r.t. the

growth of the number of nodes. For example, the running time

of the CFL-reachability algorithm on “jython09” is 30 times over

that on “xalan06”. While, it is only 4 times for our algorithm on

the same benchmarks. We also note that our algorithm consumes

less memory than the traditional CFL-reachability algorithm.

4.2.3 Discussion

Understanding the Asymptotic Behavior. The SPGs generated from

the benchmarks are very sparse — there are fewer edges than

nodes across all SPGs. This is expected for the client alias anal-

ysis and is consistent with the information in the original pa-

pers [90, 92]. For sparse graphs with m = O(n), the asymptotic

complexity of our algorithm is O(n log n).

Moreover, in the traditional CFL-reachability algorithm, the

CHAPTER 4. APPLICATION: SCALING AN ALIAS ANALYSIS FOR JAVA91

Benchmark #Mtds #Stmts
SPG

#Nodes #Edges #S-pair #para

antlr 9904 170402 16735 13878 19385 1087

bloat 11818 206857 20320 16224 23080 1197

chart 25184 448984 44584 36329 50670 2948

eclipse 10447 181101 17527 14411 20335 1182

fop 23643 431569 39977 31515 45837 2724

hsqldb 9177 156265 15015 12693 17615 998

jython 12802 216068 21615 17381 24487 1240

luindex 9668 164598 16098 13336 18716 1071

lusearch 10196 175354 17003 14195 19911 1117

pmd 11167 193375 18167 14958 20843 1168

xalan 9181 155180 15030 12645 17608 996

batik 22938 404097 40273 32052 46225 2565

eclipse 18741 354818 37531 31889 54471 2221

jython 41518 642242 63516 49005 85552 2855

sunflow 22346 385873 39321 31339 45161 2484

tomcat 25123 441606 45966 37338 63414 3013

Table 4.1: Benchmark programs.

grammar rules should be scanned for each iteration for inserting

new summary edges. Specifically, for the Dyck language of size

k, each edge popped from the worklist (line 7) in Algorithm 1

needs to be compared with the O(k) rules in the given grammar.

However, in our algorithms, the above is unnecessary. It takes

expected O(1) time to find a relevant edge labeled by a matched

parenthesis in both our tree algorithm and graph algorithm due

to the use of the FDLL.

CHAPTER 4. APPLICATION: SCALING AN ALIAS ANALYSIS FOR JAVA92

Benchmark
Time Memory

CFL fast-dyck CFL fast-dyck

antlr 37.42 0.041 29.68 20.21

bloat 43.09 0.048 35.09 23.89

chart 253.06 0.119 76.75 52.02

eclipse 42.26 0.042 30.97 21.19

fop 219.53 0.101 67.99 46.08

hsqldb 33.39 0.038 27.10 18.22

jython 49.57 0.052 37.20 25.32

luindex 35.15 0.040 28.64 19.45

lusearch 40.22 0.043 30.34 20.73

pmd 40.28 0.046 32.00 21.90

xalan 32.93 0.038 26.93 18.21

batik 206.50 0.100 68.77 46.60

eclipse 366.39 0.103 70.82 44.54

jython 947.49 0.163 112.14 72.18

sunflow 196.23 0.096 67.22 45.57

tomcat 622.36 0.124 83.98 53.56

Table 4.2: Performance comparison: time in seconds and memory in MB.

Understanding the Memory Consumption. Both our algorithm and

the traditional CFL-reachability algorithm demand moderate

amount of memory for the client alias analysis. The memory

cost for representing the input graphs in both algorithm is simi-

lar. The traditional CFL-reachability algorithm needs more iter-

ations to compute the graph closure than those in our algorithm,

therefore, it requires more space as well.

Note that we only used the cubic CFL-reachability algorithm

(without applying the Four Russians’ Trick) in our comparison.

The subcubic CFL-reachability algorithm demands non-trivial

CHAPTER 4. APPLICATION: SCALING AN ALIAS ANALYSIS FOR JAVA93

memory for storing the input graphs in our client application.

For instance, given a medium-sized graph from our client analysis

with 15000 nodes and 1000 parentheses, the subcubic algorithm

needs about 26.2 GB memory to store the graph. It is an inter-

esting topic to scale the subcubic CFL-reachability algorithm on

real-world analysis.

Interpreting the Alias Analysis. In the field-sensitive, context-insensitive

alias analysis for Java, the aliasing pairs are typically sparse. All

benchmarks in our evaluation have O(n) aliasing pairs (the #S-

pair column in Table 4.2). This indicates that for real-world

applications, most of the variables are not aliases. We have also

observed from the experiments that the length of an aliasing

path is small; almost all of the aliasing paths are simple paths

without cycles. This observation is consistent with the state-of-

the-art demand-driven analyses [80, 92, 97].

Demand-Driven vs. Exhausted. We now discuss perhaps one of the

most interesting implications from our study. We have noticed

that the performance of our all-pairs algorithm for field-sensitive,

context-insensitive alias analysis is extremely fast. Such an ex-

haustive analysis with small time and memory cost is particularly

suitable for application scenarios that need client analyses to be

CHAPTER 4. APPLICATION: SCALING AN ALIAS ANALYSIS FOR JAVA94

able to respond instantly, such as just-in-time (JIT) optimiza-

tions and interactive development environments (IDEs). Com-

pared to demand-driven analyses, our exhaustive alias analysis

can answer any query in O(1) time.

In practice, the two algorithms introduced in this paper can be

combined to achieve better performance. For a connected com-

ponent of the SPG encountered during analysis, it is straight-

forward to check whether the component is a graph or a tree

by counting the number of nodes and edges. Furthermore, one

can design an effective analysis switching between our tree and

graph algorithms to achieve even better performance.

2 End of chapter.

Chapter 5

Fast CFL-Reachability

Algorithms

5.1 Introduction

Programs written in C make extensive use of pointers. Deter-

mining pointer aliases is one of the fundamental static analysis

problems, since alias information is usually a prerequisite for

most subsequent analyses. Given two pointer variables, the gen-

eral approach to alias analysis is to check whether the intersec-

tion of their points-to sets is non-empty [40]. Alias analysis for

C has been formulated as a context-free language (CFL) reacha-

bility problem on Pointer Expression Graphs (PEGs) [97], with

precision equivalent to an inclusion-based (i.e., Andersen-style)

points-to analysis [10]. The advantage of CFL-reachability-based

alias analysis is that the alias information can be directly com-

95

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 96

puted without first obtaining each variable’s points-to set.

In general, the CFL-reachability problem has several vari-

ants [67]. The single-source-single-sink variant concerns CFL-

reachability between only two nodes, while the all-pairs variant

considers CFL-reachability over all nodes in the graph. Solving

all-pairs CFL-reachability is considerably more expensive than

the single-source-single-sink variant. The traditional all-pairs

CFL-reachability algorithm exhibits an O(n3) time complexity,

where n denotes the number of nodes in the given graph [70, 93].

Consequently, straightforward implementations are ill-suited for

handling large-scale applications in practice. Thus far, the key

to scale the CFL-reachability-based alias analysis is to make

the analysis demand-driven, aiming at solving the single-source-

single-sink CFL-reachability problem [78, 80, 92, 97]. When the

concerned CFL is restricted to a Dyck language, an improved

analysis for Java solving all-pairs Dyck-CFL-reachability is pro-

posed recently [95]. However, no all-pairs CFL-reachability-

based alias analysis for C is known to date. Moreover, a subcubic

CFL-reachability algorithm has been proposed [20], but its prac-

tical benefits remain unclear.

In this chapter, we present a highly scalable alias analysis for

C. To the best of our knowledge, this is the first all-pairs CFL-

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 97

reachability-based alias analysis. Our principal contribution is

an efficient algorithm that solves the all-pairs CFL-reachability

problem formulated in an existing alias analysis for C using

PEG [97]. The main novelty of our alias analysis algorithm is to

compute the CFL-reachability summaries based on original edges

in the graph and summary edges that describe only memory

aliases, while the traditional CFL-reachability algorithm com-

putes all summary edges. We also utilize the Four Russians’

Trick [11] — a key enabling technique in the subcubic CFL-

reachability algorithm [20] — in our alias analysis. We have im-

plemented our subcubic alias analysis and conducted extensive

experiments on the latest stable releases of widely-used C pro-

grams from the pointer analysis literature1. The results demon-

strate that our alias analysis solving all-pairs CFL-reachability

performs extremely well in practice. In particular, it can analyze

the latest Linux kernel, which has over 10M source lines of code

(SLOC), in less than 80 seconds.

Moreover, we also study the algorithmic complexity of flow-

and context-insensitive inclusion-based pointer analysis on well-

typed C. Within this domain, the precise pointer analysis prob-

lem is shown to be in P [17]. In this work, we follow the def-

inition on the well-typeness introduced in the work of Chakar-
1As of March 2013.

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 98

avarthy [17]. We show that, for the well-typed C, there ex-

ist asymptotically faster inclusion-based pointer analysis algo-

rithms.

To sum up, this chapter proposes two fast CFL-reachability

algorithms for alias analysis using PEGs. Given a PEG with

n nodes and m edges, we give an efficient algorithm for solving

the all-pairs CFL-reachability in O(n(m + M)) time, where M

denotes the number of memory alias pairs in the final graph.

On average, our CFL-reachability algorithm is 2-3 orders faster

than the traditional CFL-reachability algorithm on large real-

world applications. When the input C program is restricted to

be well-typed, we also present an algorithm with O(n(m + M̃))

time and O(n2) space complexities for processing, after which

both points-to and alias analysis queries can be answered in O(1)

time, where M̃ denotes the maximum memory alias pairs on one

layer. In the literature, the PEGs are typically quite sparse

with m = O(n), which implies that our graph algorithm has a

quadratic time complexity in practice.

The rest of this chapter is structured as follows. Section 5.2

introduces the CFL-reachability formulation for alias analysis

for C. Section 5.3 presents our subcubic alias analysis algorithm.

Section 5.4 describes our alias analysis algorithm for well-typed

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 99

C.

5.2 The Zheng-Rugina Alias Analysis Formulation

Our algorithm solves the all-pairs CFL-reachability formulated

by Zheng and Rugina [97] for demand-driven alias analysis for

C. This section briefly reviews their formulation and discusses

the advantages of using PEGs for alias analysis.

5.2.1 Pointer Expression Graphs

The input to our algorithms is a bidirected graph, known as a

Pointer Expression Graph (PEG) [97]. A PEG represents the

given C program in a canonical form that consists of sets of

pointer assignments. The pointer analysis based on PEGs is flow-

insensitive, therefore, control flow between pointer assignments is

irrelevant. PEGs model the core C-style pointer language shown

in Figure 5.1. PEGs also handle additional C language features

(e.g., arrays, structures, and pointer arithmetics), as detailed by

Zheng and Rugina [97, Section 6.1].

There are three basic ingredients in the core language in Fig-

ure 5.1: memory addresses a ∈ Addresses , pointer expressions

e ∈ Expressions and pointer statements s ∈ Statements . Mem-

ory addresses model the symbolic addresses of variables, and can

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 100

a ∈ Addresses ::= avar | aheap
e ∈ Expressions ::= ∗e | a
s ∈ Statements ::= ∗e1 := e2

Figure 5.1: Core syntax of C pointers

be obtained via either the address-of operator (e.g., &x) or mem-

ory allocation (e.g., malloc()), denoted as avar and aheap respec-

tively. Pointer expressions model the behavior of the indirection

operator (e.g., *x) in C. Pointer variables are allowed by arbitrary

pointer dereferences. Finally, pointer statements model program

statements that manipulate pointers.

A PEG G = (V,E) is a graph representation that depicts

the canonical form of all pointer statements from the input C

program. In a PEG, each node v ∈ V represents a pointer

expression e. A PEG also contains two kinds of edges:

• Pointer dereference edges (d-edges): For each pointer defer-

ence ∗e, there is a directed edge from e to ∗e labeled by d.

Let the nodes representing e and ∗e be u and v. We denote

such labeled edges as (u, d, v) ∈ E.

• Pointer assignment edges (a-edges): For each assignment

statement ∗e1 := e2, there is a directed edge from e2 (as

node u) to ∗e1 (as node v) labeled by a. We denote it as

(u, a, v) ∈ E.

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 101

M ::= d̄ V d (5.1)

V ::= (M? ā)∗ M? (a M?)∗ (5.2)

Figure 5.2: CFL-reachability formulation of alias analysis for C.

For example, the top-level pointer variables are represented

as nodes without outgoing d-edges, while the address-taken vari-

ables are represented as nodes without incoming d-edges and

incoming a-edges. Specially, for each d-edge and a-edge in the

PEG, there always exist a corresponding reverse edge labeled by

d̄ and ā in the opposite direction, i.e., ∀(u, d, v), (u, a, v) ∈ E,

we have (v, d̄, u), (v, ā, u) ∈ E. We call the corresponding edges

d̄-edges and ā-edges respectively. Moreover, we denote the set of

d-edges and d̄-edges as D-edges. A-edges are defined similarly.

Note that the bidirectedness accomplished by introducing the

reverse edges is a prerequisite for CFL-reachability-based formu-

lations of pointer analysis [67].

5.2.2 Memory Aliases and Value Aliases

In a PEG, the alias analysis problem is formulated by the CFG

shown in Figure 5.2, using EBNF notation. CFG can be repre-

sented using recursive state machines [9]. The equivalent recur-

sive state machines of Zheng-Rugina formulation are adopted in

Figure 5.3.

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 102

M

V

V
d̄ d

MM

S1

S2

S3

S4

aā

ā a

a

a

Figure 5.3: The recursive state machines.

The formulation distinguishes two kinds of aliases:

• Memory aliases (M): two pointer variables are memory

aliases if they denote the same memory location.

• Value aliases (V): two pointer variables are value aliases if

they are evaluated to the same pointer value.

According to the grammar, nodes u and v in the PEG are

aliases if there exist an M -path or V -path between them. More-

over, the memory aliases and value aliases, represented as sum-

mary edges (u,M, v) and (u, V, v), can be considered a binary

relation on all node pairs. Following the discussion by Zheng

and Rugina [97], we summarize the properties on the M and V

relations as follows:

• V is nullable, M is not nullable;

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 103

M ::= DV d

DV ::= d̄ V

V ::= MAM AMs

MAM ::= MAs Mq

Mq ::= ε

Mq ::= M

MAs ::= ε

MAs ::= MAs MA

MA ::= Mq ā

AMs ::= ε

AMs ::= AMs AM

AM ::= a Mq

M ::= DV d

DV ::= d̄ V

S1 ::= S1 ā

S2 ::= S1 M

S1 ::= S2 ā

S3 ::= S2 a

S3 ::= S1 a

S3 ::= S3 a

S4 ::= S3 M

S3 ::= S4 a

V ::= S1

V ::= S2

V ::= S3

V ::= S4

S1 ::= ε

Figure 5.4: Two normal forms (CFL1 and CFL2) of the CFL used in alias analysis
for C.

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 104

• Both V and M are symmetric;

• V is reflexive, M is reflexive for non-address-taken variables;

• Neither V nor M is transitive.

As aforementioned, the traditional CFL-reachability algorithm

uses a “normal form” for the given CFG in Figure 5.2. We con-

sider two such normal forms in Figure 5.4. In the figure, the form

to the left (CFL1) is converted directly from the original grammar

using a standard procedure for translating EBNF. For example,

“(M? ā)∗M?” is translated into the rule “MAM ::= MAs Mq”,

where the subscripts s and q denote the star and question marks

respectively. The form to the right (CFL2) is converted directly

from the recursive state machines in Figure 5.3. For example,

the state transition δ(S1, a) = S3 is translated into the rule

“S3 ::= S1 a”. Finally, we give an analysis example summarizing

the discussions for illustration.

Example 13 Figure 5.5 gives an example of alias analysis us-

ing the PEG. The C code snippet (left) and its PEG (right) are

shown. In the PEG, the dotted edges represent the d-edges and

the solid edges represent the a-edges. The reverse edges (i.e.,

ā-edges and d̄-edges) are omitted for brevity. In the PEG, nodes

*v and y are memory aliases because the realized string R(p) of

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 105

int x;

int *u, *w, *y, *z;

int **v;

u = *v;

*v = w;

v = &y;

y = &x;

z = y;

(a) A code snippet.

u

*u

&u

&v

v

*v

**v

w

&w

*w

&x

x

y

*y

&y

z

*z

&z

(b) The corresponding PEG.

Figure 5.5: An example of pointer analysis with the PEG.

path p = ∗v, v,&y, y is “d̄ād”, which can be generated from M in

Figure 5.2. Similarly, nodes u and &x are value aliases since the

realized string “ād̄ādā” can be generated from V . Note that V

is not transitive. In the PEG, notes w and u, nodes u and &x are

both value aliases. However, nodes w and &x are not value aliases

since the realized string “ad̄ādā” can not be generated from V .

5.2.3 Advantages of PEG

Alias analysis for C via CFL-reachability on PEGs has several

advantages over traditional pointer analysis formulated as a dy-

namic transitive closure problem. We discuss some of the advan-

tages below.

The most attractive feature is that PEGs depict the complex

pointer assignments (e.g., **x = ***y) directly without introducing

temporaries. As discussed in Section 2.2, traditional inclusion-

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 106

based pointer analyses have to transfer pointer statements into

one of the four forms in Figure 2.7. The transformation also

causes some precision loss, since it introduces additional points-

to or alias pairs to the original program [13, 17, 41]. However, in

the PEG representation, we do not need the temporaries. The

pointer assignment is directly represented as an a-edge (u, a, v),

where u and v represent ***y and **x respectively.

In a PEG, the pointer variables are partitioned into differ-

ent connected components. It is impossible for a variable in one

connected component to be aliased with the variables from other

connected components. For traditional inclusion-based pointer

analysis formulated as a dynamic transitive closure problem, it is

not straightforward to distinguish the connected components be-

cause new edges could be inserted to the graph during graph clo-

sure [34]. In the literature, there has been work that heuristically

determines the components and performs analysis on each com-

ponent independently [44, 96]. However, the idea of connected

component decomposition on PEGs is quite natural and can be

done using a simple depth-first search (DFS). Consequently, the

CFL-reachability algorithm can work on each connected compo-

nent of smaller size to achieve better performance.

Finally, the traditional approach to alias analysis is to perform

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 107

an inclusion-based points-to analysis and then check the intersec-

tion of every variable pair’s points-to sets. Both points-to analy-

sis and alias analysis have been formulated as CFL-reachability

problems on PEGs. Specifically, the alias result can be com-

puted independently, with precision equal to an inclusion-based

points-to analysis [97].

5.3 Alias Analysis Algorithm

In this section, we present our alias analysis algorithm for C. Our

algorithm takes PEGs as input and computes all-pairs CFL-

reachability formulated by Zheng and Rugina [97]. We begin

by illustrating the basic idea of our algorithm in Section 5.3.1.

We then describe our technique for CFL-reachability summary

propagation in Section 5.3.2, and give the main alias analysis

algorithm in Section 5.3.3. Finally, we describe how to apply the

Four Russians’ Trick to our all-pairs CFL-reachability algorithm

in Section 5.3.4.

5.3.1 Basic Idea

Our alias analysis algorithm for C is a worklist-based algorithm

that follows the traditional dynamic programming scheme for

solving all-pairs CFL-reachability. Each worklist item represents

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 108

a reachability summary edge (u,X, v) between nodes u and v.

The main algorithm exploits the following two facts from the

original CFL-reachability formulation. Consider the summary

edges describing memory aliases and value aliases respectively

in the PEG,

Fact 1 Each M-path is generated by prepending a d̄-edge and

appending a d-edge to a V -edge.

Fact 2 Each V -path is generated by a path whose R(p) = a∗a∗,

injected with zero or more non-consecutive M-paths.

Fact 1 immediately follows from rule (5.1) in the grammar in

Figure 5.2. In rule (5.2), if we substitute every occurrence of

M with the empty string ε, V becomes a regular language ā∗a∗.

Moreover, the M nonterminals injected in the V nonterminal

are not consecutive because the M relation is not transitive.

Therefore, they are separated by at least one ā-edge or a-edge,

as described in Fact 2. According to the two observed facts, we

introduce the following lemma on value aliases,

Lemma 3 For each V -path joining two nodes representing non-

top-level variables, there exist an M-path joining the nodes rep-

resenting the corresponding dereferenced pointer variables.

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 109

State

Input
a ā

0 1 0

1 1 ×

0start 1

ā a

a

Figure 5.6: The finite automata used in the chain case.

Proof. Let the two nodes be u and v. Since neither of them is a

top-level variable, the corresponding nodes representing derefer-

enced pointer variables always exist. Let the two nodes be u′ and

v′, such that they are connected via d-edges (u, d, u′) and (v, d, v′)

respectively. Following from Fact 1, if there exist (u, V, v), there

must also exist (u′,M, v′). 2

When the input graph is a chain, we can use a stack-based

algorithm to compute the single-source-single-sink reachability.

Specifically, the matched parentheses d and d̄ can be simulated

using the stack. The parentheses are properly matched iff the

stack is not any empty both during the processing and at the end

of processing. For the regular language ā∗a∗ observed in Fact 2,

the a and ā symbols can be accepted using a finite automata

shown in Figure 5.6. Note that due to the CFG in Figure 5.2, for

every M -path p = u, u′, . . . , v′, v, there always exists an enclosed

V -path p′ = u′, . . . , v′ such that L(u, u′) = d̄ and L(v′, v) =

d. Therefore, the finite automata in Figure 5.6 can be used

on each layer recursively. As a result, the CFL-reachability for

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 110

Algorithm 10: Stack-based algorithm to compute the V -reachability be-
tween nodes u and v in the chain case.
Input : A path p = (u, u1, . . . , v1, v) from a tree T ;
Output: true or false indicating if v is V -reachable from u;

1 w ← u and State [u] ← 0 ;
2 while w 6= v do
3 x← w and y ← Succ(x);
4 switch L(x, y) do
5 case d
6 if Stack is empty return false;
7 State [y] ← Stack.pop() ;
8 break;

9 case d̄
10 Stack.push(State [x]);
11 break;

12 case a ;
13 case ā
14 State [y] ← δ(State [x],L(x, y)) ;
15 if State [y] = × return false ;
16 break;

17 w ← y ;

18 if the Stack is empty return true , else, return false ;

pointer analysis can be computed by combining the stack and

finite automata together.

The stack-based algorithm for computing the V -reachability

between nodes u, and v in the chain case is given in Algorithm 10.

For brevity, we omit the computation on Pt-reachability and

M -reachability since they share the same insight. Algorithm 10

associates every node v in the path p with a state State[v]. On

the same layer, δ denotes the state transit of the finite automata

in Figure 5.6. The stack is used to handle the properly matched

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 111

parentheses due to d and d̄ edges. Specifically, when an opening

parenthesis L(x, y) = d̄ is encountered, State[x] is pushed to

the stack. When the matched closing parenthesis L(x, y) = d

is encountered, the state information is restored to State[x] by

popping the stack. Finally, v is V -reachable from u iff the stack is

empty when v is reached, as described at line 18 in Algorithm 10.

The basic idea of our algorithm is to generate M and V reach-

ability summaries w.r.t. the matched pairs of D-edges in the

PEG. To this end, our algorithm first propagates the reacha-

bility summaries to find the rightmost d-edge in each M -edge.

Then, the reachability summaries are propagated in the oppo-

site direction to find the leftmost matched d̄-edge. We name

this procedure as two-phase propagation. Specifically, for each

memory alias summary edge (u,M, v) popped from the work-

list, the reachability information is propagated along A-edges

and M -edges connected to nodes u and v (Fact 2). New sum-

mary edges representing value aliases are inserted to the work-

list. Similarly, for each value alias summary edge popped from

the worklist, we look for matched pairs of D-edges using the two-

phase propagation to generate new memory alias summary edge

(Fact 1). When the memory alias result is obtained, the value

aliases between non-top-level variables are obtained as well due

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 112

to Lemma 3. For top-level variables, we perform one additional

two-phase propagation to compute the alias pairs.

It is important to note that for each summary edge (u,X, v)

popped from the worklist, our algorithm computes the new CFL-

reachability summaries based on the neighbors of u and v in the

original graph and the neighbors connected by edges that de-

scribe memory aliases in the current graph. However, the tradi-

tional CFL-reachability algorithm considers the neighbors con-

nected by more summary edges in the current graph. Next, we

give a concrete example to illustrate the basic idea.

Example 14 Consider the PEG in Figure 5.5. We describe

the major steps to compute the memory aliases between nodes

*v and y as below. The summary edge popped from the worklist

is (v,M, v). In phase one, the reachability information is propa-

gated to find the “rightmost”2 d-edge (v, d, ∗v). Then phase two

propagation starts. After the “leftmost” d̄-edge (y, d̄,&y) is en-

countered, the summary edge (y,M, ∗v) representing the memory

aliases is inserted into the PEG.
2The left and right are relative to summary edge (y,M, ∗v) rather than the actual left and right

in Figure 5.5.

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 113

(a) V -path

(b) V -path represented by a-edges

1 . . . 2 . . . 3 . . . 4 . . . 5
ā ā ā ā a a a a

1 . . . 2 . . . 3 . . . 4 . . . 5
a a a a a a a a

Figure 5.7: The positions of M in V .

Step Current edge New edge Phase

1 — (v,M, v) —

2 (v,M, v) (v, D′1, ∗v) Phase one

3 (v, D′1, ∗v) (&y, D1, ∗v) Phase two

4 (&y, D1, ∗v) (y,M, ∗v) Phase two

5.3.2 Propagating CFL-Reachability Summaries

The above two-phase propagation focuses on M -edges and A-

edges, since the matched pair of D-edges are the two endpoints

for the propagation. We first discuss the relation between M -

edges andA-edges in a V -path. Due to Fact 2, the realized string

of a V -path can be considered as ā∗a∗ without any M -edges.

Although M may be injected in the various positions within

V , all positions can be distinguished as five unique positions

described in Figure 5.7(a). Since the PEG is bidirected with

reverse edges, Figure 5.7(b) represents the same V -path using

only a-edges. Moreover, positions 1 and 5 are two endpoints of

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 114

the V -path. If there exist additional edges, it must be a matched

pair of D-edges to continue the propagation.

Let us now consider the M -edges (u,M, v) in each of the five

positions. Note that due to the reflexivity of M on non-address-

taken variables, for each edge (u,M, v), we have (v,M, u) for

all u and v. For the address-taken variables, we represent the

M -edges implicitly in the worklist to start the propagation with-

out inserting them to the graph. When the M -edge (u,M, v) is

in positions 3 and 4, the reachability information can always

be propagated though node v to position 5 via a-edges and M -

edges. Position 5 indicates that the first phase propagation is

completed, since it is one endpoint of the V -path. When edge

(u,M, v) is in position 2, we can use the reflexive edge (v,M, u)

to propagate the reachability summary though node u to posi-

tion 1 via a-edges and M -edges. Position 1 is exactly the same

as position 5 if the reflexive edge (v,M, u) is considered. We

summarize the above discussion as the following lemma:

Lemma 4 For each edge (u,M, v), it suffices to consider the

a-edges of u or v to initiate the first phase propagation.

It is important to note that the five positions in Figure 5.7

describe both M positions in state machine V in Figure 5.3.

Specifically, the left M position in state machine describes M

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 115

Input a d M

State

M V1 D′
1 ×

V 1 V1 D′
1 V ′

1

V ′
1 V1 D′

1 ×

Mstart

D′1

V1 V ′1

a

a

M

a

d d
d

Figure 5.8: Phase one propagation.

Input a ā d M

State

D′
1 D2 D1 M ×

D1 D2 D1 M D′
1

D′
2 D2 × M ×

D2 D2 × M D′
2

D′1start

M

D1

D′2

D2

a

aā

d

d

d

d

a

āM aM

Figure 5.9: Phase two propagation.

in the language ā∗, which is depicted by positions 1, 2 and 3

in Figure 5.7. Similarly, the right M position describes M in

the language a∗ following ā∗aa∗, which is depicted by positions

4 and 5. Without loss of generality, we explain the two-phase

propagation w.r.t. the five positions in Figure 5.7.

Phase One Propagation. In this phase, we use the finite state

machine in Figure 5.8 to propagate the reachability summary for

eachM -edge (u,M, v). If one of the nodes u and v is the endpoint

in the V -path, the phase two propagation starts immediately

using the other node. Otherwise, due to the reflexivity of M

and Lemma 4, let v be the node with an outgoing neighbor v′,

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 116

such that L(v, v′) = a. In the first phase, the CFL-reachability

summary is propagated to the right. According to positions 3,

4 and 5 in Figure 5.7, node v′ may encounter arbitrary a-edges

and M -edges to the right during the propagation. We depict

it as state V1 in Figure 5.8. Moreover, one additional state V ′1

is needed to respect the fact that the Ms are non-consecutive

(Fact 2). Finally, when the rightmost d-edge is encountered,

states M , V1 and V ′1 transit to D′1 and phase-two propagation

starts.

Phase Two Propagation. In this phase, we use the finite state ma-

chine in Figure 5.9 to propagate the reachability summary in the

opposite direction for each D′1-edge (u,D′1, v). Similarly, accord-

ing to positions 3, 4 and 5 in Figure 5.7, node u may encounter

some A-edges and M -edges to the left during the propagation.

Specifically, due to both the symmetry of V and Fact 2, all A-

edges encountered to the left can be described by ā∗a∗. There-

fore, two states D1 and D2 are required to accept the regular

language. As before, two additional states D′1 and D′2 are re-

quired to respect the fact that the Ms in V are non-consecutive.

Finally, when the leftmost d̄-edge is encountered3, a new M -edge

is generated and the two-phase propagation completes.
3The leftmost d̄-edge is treated as a d-edge when the right-to-left direction is considered.

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 117

5.3.3 Alias Analysis Algorithm

The main algorithm for computing all-pairs memory aliases is

given in Algorithm 11. It is a worklist-based algorithm that

follows the traditional dynamic programming scheme for solving

all-pairs CFL-reachability. The algorithm takes a PEG as input,

and proceeds in two major steps:

• Initialization. The worklist W is initialized on lines 1-4. All

nodes are considered. The non-address-taken node u has

an incoming d-edge (u, d, v). Due to the reverse edges, the

realized path R(p) for p = u, v, u is d̄d, which describes a

memory aliases location. The resulting M -edge is inserted

into the graph. Note that the M -edges for address-taken

variables in the initialization phase do not need to be in-

serted to the PEG explicitly.

• Reachability summary propagation. When a reachability

summary edge (u,X, v) popped from the worklist, the reach-

ability information is propagated using the two-phase prop-

agation. Specifically, we use the find-transition proce-

dure to look for the relevant transitions in the corresponding

phase. For example, in the phase one propagation on lines 8-

15, for each outgoing neighbor w of v connected via edge

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 118

u v w

Yα

X α
w u v

Yα

Xα

(a). Phase one. (b) Phase two.

Figure 5.10: Adding summary edges in two phases.

(v, α, w), the find-transition procedure returns state Yα

according to the transition table in Figure 5.8. The sum-

mary edge (u, Yα, w) is then inserted to the PEG depicted

in Figure 5.10. The phase-two propagation on lines 17-24 is

handled similarly.

The algorithm terminates when the worklist W is empty. All

summary edges describing memory aliases are presented in the

final PEG.

Computing Value Aliases. Based on the memory alias result, we

can compute the value alias reachability by reusing some of the

summary edges in the current graph. Due to Lemma 3, the value

aliases between any non-top-level variables can be obtained by

removing the matched D-edge pair of any existing M -path. In

order to compute the value aliases for top-level variables, we

can perform an additional two-phase propagation if one of the

endpoints is a top-level variable. The algorithm is exactly the

same. Due to the space constraints, we omit the value alias

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 119

Algorithm 11: Computing Memory Aliases.

Input : PEG G = (V,E);
Output: the set of summary edges;

1 foreach v ∈ V do
2 insert (v,M, v) to W ;
3 if v has incoming d-edges then
4 insert (v,M, v) to G;

5 while W 6= ∅ do
6 (u,X, v)← Select-From(W) ;

7 /* Phase 1 propagation. */

8 if X = M or X = V1 or X = V ′1 then
9 foreach α ∈ {a, d,M} do

10 Yα ← Find-Transition(X,α) ;
11 if Yα == × then continue;
12 foreach w ∈ Out(v, α) do
13 if (u, Yα, w) /∈ G then
14 insert (u, Yα, w) to G and to W ;
15 if Yα == M then insert (u, Yα, w) to G and to W ;

16 /* Phase 2 propagation. */

17 if X = D1 or X = D′1 or X = D2 or X = D′2 then
18 foreach α ∈ {a, ā, d,M} do
19 Yα ← Find-Transition(X,α) ;
20 if Yα == × then continue;
21 foreach w ∈ In(u, α) do
22 if (w, Yα, v) /∈ G then
23 insert (w, Yα, v) to G and to W ;
24 if Yα == M then insert (w, Yα, v) to G and to W ;

algorithm.

Complexity Analysis. The worst-case complexity of Algorithm 11

is O(n(m+M)), where M denotes the number of M -edges, and

n and m denote the numbers of nodes and edges in the origi-

nal graph respectively. For each summary edge (u,X, v), Algo-

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 120

rithm 11 traverses its neighbors connected via A-edges, D-edges

and M -edges. Let k and ∆v denote the grammar size and the de-

gree of node v concerning these three kinds of edges respectively.

From Figure 5.8 and Figure 5.9, we have k = 7 since there are

7 kinds of summary edges. The total number of steps required

are 7 · Σ(u,v)∆v = 7 · Σu(Σv∆v). Therefore, the worst-case time

complexity is O(n(m+M)).

Connected Component Decomposition. The worst-case time com-

plexity depends on the number of nodes in the PEG. There-

fore, in practice, we can reduce n by decomposing the original

PEG into connected components. Since the nodes in two con-

nected components are unreachable, computing the reachability

on those smaller components yields the same results as comput-

ing on the original PEG. The connected component decomposi-

tion can be done using a simple linear-time depth-first search on

the PEG. We further investigate the practical benefits that this

optimization brings in the evaluation section.

5.3.4 Saving a Logarithmic Factor

The Four Russians’ trick [11] is known as a popular technique

for speeding up set operations under the random access machine

model with uniform cost criterion. The original paper proposed

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 121

an O(log d)(n3/log n) algorithm for finding the transitive closure

of a directed graph with n nodes and diameter d. The technique

has been applied in various contexts. Examples include shortest

path problems [18], Boolean matrix multiplication [5, Ch. 6],

and k-clique problems [85], to name just a few.

In particular, this technique has also been adopted for fast

recognition of context-free languages [73] as well as reachability

problems in recursive state machines [20], resulting in a loga-

rithmic speedup. We can apply this technique to Algorithm 11

directly. We first recall some preliminaries. We begin by as-

suming the RAM model has word length θ(log n) and constant-

time bitwise operations on words. Let U denote a universe of

n elements. A subset of U can be represented as a bit vector

(a.k.a. characteristic vector) of length n by representing each el-

ement as a single bit. The characteristic vector is then stored in

O(dn/log ne) words each with θ(log n) bits. Following the work

of Chaudhuri [20], we refer to the resulting data structure as fast

set, which permits the following two operations:

• insert(X, i): insert an element i into fast set X.

• diff(X, Y): compute the set difference between fast set X

and Y and return a list of all the resulting elements.

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 122

Lemma 5 Given fast sets X, Y ⊆ {1, . . . , n}, and i ∈ {1, . . . , n},

(i) insert (X, i) takes O(1) time;

(ii) diff (X, Y) takes O(dn/log ne + v) time, where v is the

number of elements in the result set.

Proof. (i) is obvious by determining the position of i in relevant

word of X and then performing the bitwise or operation. (ii)

follows in two steps. First, we perform the bitwise operations on

the words comprising X and Y , resulting in Z = X \ Y . This

takes O(dn/log ne) time under the assumed RAM model. Then,

we list all the elements in Z by repeatedly finding and turn-

ing of the most significant bit, this takes time O(v), where v is

the number of elements. If this operations are not directly sup-

ported, we can precompute the answers to all words (or pairs of

words) with O(n) preprocessing time and subsequently perform

table lookups. 2

In our algorithm, we can represent the In and Out sets using

fast sets. Therefore, lines 12-13 in Algorithm 11

foreach w ∈ Out(v, α) do

if (u, Yα, w) /∈ G then

can be changed using the fast-sets operations as

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 123

foreach w ∈ diff (Out(v, α),Out(u, Yα)) do.

Similarly, lines 21-22 can be changed to

foreach w ∈ diff (In(u, α), In(v, Yα)) do.

The new algorithm takes O(n/log n) time to traverse the three

kinds of edges for each node n. As a result, the total time com-

plexity is O(n(n · n/log n)) = O(n3/log n).

5.4 Well-Typed Alias Analysis Algorithm

In this section, we describe the algorithm for solving the well-

typed pointer analysis problem on PEGs. Let M̃ denote the

maximum memory alias pairs on one layer. Given a well-typed

PEG with n nodes and m edges, our algorithm processes the

graph in O(n(m + M̃)) time with O(n2) space, after which any

points-to and alias query can be answered in O(1) time.

Our algorithm first pre-processes the input PEG in O(m) time

and collects necessary information (e.g., layer information and

pointer deference information) which is required by the main al-

gorithm. As discussed in Section 5.3.1, the realized string R(p)

eliminating M -edges for each V -path is ā∗a∗, which is a regular

language. We describe the finite state automate for regular lan-

guage ā∗a∗ in Figure 5.6. The high-level idea of our main pointer

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 124

analysis algorithm is to compute the all-pairs points-to and alias

reachability layer by layer, in a bottom-up manner. In the fol-

lowing sections, we begin by introducing the pre-processing pass.

Then, we describe the algorithm for handling bottom-layer vari-

ables. With bottom-layer reachability computed, we further il-

lustrate the main algorithm for the whole PEG by connecting

reachability information of two adjacent layers. Finally, we give

the complexity and correctness analysis.

5.4.1 Pre-Processing

The pre-processing pass is actually an O(m) time graph traversal

procedure starting at an arbitrary node. The procedure achieves

the goals as follows:

• Obtaining layer information. For the starting node u, we

safely assign it to layer |n|, i.e., l(u) = |n|. For any edge

(u, d, v) encountered during the graph traversal, we assign

it to layer l(v) = l(u) + 1. Similarly, we assign node v to

layer l(v) = l(u) − 1 according to edge (u, d̄, v). The layer

information remains the same for any A-edge or Ā-edge.

After the traversal completes, the layer information l(v) is

then adjusted to range from 0 to k, denoted as bottom and

top, respectively.

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 125

• Testing well-typeness. If the PEG is not well-typed, there

exist some cross-layer edges that make the layer information

inconsistent, i.e., l(u) 6= l(v) for some A-edges or Ā-edges,

l(v) 6= l(u)+1 for some D-edges, or l(u) 6= l(v)+1 for any D̄-

edges. The pre-processing procedural returns immediately

if the PEG is not well-typed.

• Mapping node information. During the graph traversal, we

construct two hash tables He : Expressions → n and Ha :

Addresses → n for mapping each pointer expression to the

corresponding node in the PEG. Moreover, each node v is

assigned to set V [l(v)] and each edge (u, d̄, v), (u, a, v) or

(u, ā, v) is assigned to set E[l(v)].

5.4.2 Handling Bottom-Layer Variables

After pre-processing, the nodes in the input PEG are stored us-

ing disjoint sets V [k], where k denotes the layer information. Our

algorithm starts with nodes at the bottom layer (i.e., v ∈ V [0]).

We compute the all-pairs reachability among bottom-layer vari-

ables by formulating it as an incremental Dynamic path prob-

lem [16, 43]. Specifically, an incremental Dynamic path problem

instance starts with an empty graph that undergoes a sequence

of edge insertions. Note that the order of edges to be inserted

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 126

is completely arbitrary. For the bottom layer, there are only A-

edges and Ā-edges among nodes. Our algorithm handles each

edge insertion in amortized O(n) time.

Key Data Structures

In order to cope with the finite automata in Figure 5.6, we pair

each node v ∈ V with a state q ∈ {0, 1}, denoted as node

vq. Each edge label L(u, v) in the PEG corresponds to a one-

step state transition from state r in ur to state q in vq, i.e.,

δ(r,L(u, v)) = q. Specifically, the state transitions between ur

and vq w.r.t. A- and Ā-edges are depicted in Table 5.1. We

say node vq is reachable from ur iff there exists a path p =

ur, wi, xj . . . , yk, zl, vq such that δ(r,L(u,w)) = i, δ(i,L(w, x)) =

j, . . ., δ(k,L(y, z)) = l, δ(l,L(z, v)) = q.

The main algorithm operates on two key data structures: an

2n× 2n reachability matrix M and a reachability spanning tree

T (vq) associated with each node vq. The reachability matrix M

depicts whether two nodes ur and vq are reachable. For nodes

ur and vq, the entry murvq in M is defined as follows:

murvq =


1, vq is reachable from ur,

0, otherwise.

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 127

Procedure 12: Init() to initialize the key data structures.

1 for u← 1 to n do
2 initialize T (u1) and T (u2) as two empty trees
3 for v ← 1 to n do
4 muqvr ← 0, where q, r ∈ {0, 1}
5 mu0v0 ← 1 and mu1v1 ← 1

On the other hand, the reachability spanning tree T (vq) keeps

a list of ur that are reachable from vq. Formally, the trees are

defined as follows:

(1) the root node in T (vq) does not have any incoming edge, and

each of all non-root nodes has exactly one incoming edge;

(2) a node ur is in T (vq) iff mvqur is 1;

(3) in any spanning trees T (vq), node ws is a descendant of node

ur only if murws
is 1.

The key data structures are initialized by Procedure 12. The

running time required for the init() procedure is clearly O(n2).

However, the time complexity can be easily reduced to O(n)

by initializing each matrix entry murvq the first time when it is

accessed [5, pp. 71].

Example 15 Let us consider the example in Figure 5.11. Fig-

ure 5.11(a) shows the input PEG, and Figure 5.11(b) shows all

non-empty reachability spanning trees. In the graph, there is a

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 128

1

2

5

4

3
a

ā

a
ā

ā
a

a

ā

(a) The input PEG.

T (10)

10

20

11 31

T (20)

20

11 31

T (21)

21

11 31

T (30)

30

20 40

11 31 51

T (40)

40

31 51

T (41)

41

31 51

T (50)

50

40

31 51

(b) The reachability spanning
trees.

Figure 5.11: An example PEG with bottom-layer variables and corresponding
reachability spanning trees.

V -path from node 1 to 3 with realized string āa. Therefore, node

31 is in T (10) indicating that 31 is reachable from 10.

Main Procedures

The processing of each edge insertion is handled by Add() in Pro-

cedure 13 and Mix() in Procedure 14. In particular, procedure

Add() determines the reachability entries murvq and reachability

trees T (xt) to be updated. And procedure Mix() is a recursive

procedure that performs the actual updating. The flag marks

whether there is an M -path connecting xt and jm. For the bot-

tom layer, the flag is always set to be 0 since there is no M -path.

Note that array VM and routine Adjust() in the two procedures

are used for handling two adjacent layers to be considered in Sec-

tion 5.4.3. We can safely discard their impact when discussing

the bottom layer.

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 129

v

...
...

...
...

. . .

. . .

. . .

. . .

x

u w

u(x)

d̄
V

d

M

(a) Updating reachability in-
formation.

(il)

xt

...

...

ur

(jm)

vq

(kn)
...

...

. . .

...

. . .

. . .
...

T (vq) \ {vq}

(b) Nodes processed by pro-
cedure Mix().

Figure 5.12: Updating reachability information among bottom-layer variables.

The outcome of inserting a new edge (u, a, v) or (u, ā, v) im-

pacts on both reachability matrix entries murvq and the corre-

sponding reachability trees T (xt). First, according to the label

L(u, v) of the edge, the corresponding reachability matrix entries

murvq need to be updated w.r.t. Table 5.1. Furthermore, updat-

ing the murvq affects the corresponding reachability trees T (xt) as

described in Figure 5.12(a). Specifically, the updated matrix en-

try murvq may cause any node xt that reaches ur possibly reaches

some nodes wt in T (vq). On line 3, procedure add() employs a

routine SearchTable5.1() to determine the murvq and T (xt)

w.r.t. Table 5.1. Taking Figure 5.11(a) as an example, inserting

an edge (1, a, 4) updates the matrix entries m1141 and m1041. In

the PEG, node 20 previously reaches 11. Therefore, 20 should

reach all nodes in T (41).

Procedure Add(u,L, v) then calls Mix(xt, vq, il, jm) to update the

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 130

Edge inserted murvq updated T (xt) affected

(u, a, v)

mu1v1 T (x0)

mu0v1 T (x0)

mu1v1 T (x1)

(u, ā, v) mu0v0 T (x0)

Table 5.1: Reachability information updated according to A- and Ā-edges.

key data structures, where xt denotes the node that reaches ur in

the PEG. Procedure Mix(xt, vq, il, jm) recursively searches T (vq)

w.r.t. edge (il, jm) and updates the new reachability information

between nodes xt and jm ∈ T (vq) by pruning a unique copy of

T (vq) and inserting it into T (xt). Specifically, it involves the

following two steps:

• recursively pruning a unique copy of T (vq) by eliminating

the nodes that are already in T (xt) (lines 4-5);

• linking the nodes in the unique copy of T (vq) to T (xt) and

updating the reachability matrix (lines 2-3).

In the subsequent recursive calls, il represents the parent of jm

in T (vq), and every child kn of jm is considered. If node kn is

already reachable from xt (i.e., mxtkn = 1), the procedure Mix()

returns since all children of kn are reachable from xt (i.e., they

are also in T (xt)).

Example 16 Figure 5.13 gives the result of inserting an edge

(1, a, 4) to the PEG in Figure 5.11. The pruned copies of T (41)

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 131

Procedure 13: Add(u,L, v) to insert an edge (u,L, v).

1 foreach x ∈ V [l(v)] do
2 if L(u, v) == a or L(u, v) == ā then
3 xt, ur, vq ← SearchTable5.1(L(u, v))
4 if mxtur == 1 then
5 if mxtvq 6= 1 then Mix (xt, vq, ur, vq, 0)
6 if vq ∈ VM [xt] then
7 Adjust(xt, ur, vq)
8 Mix (xt, vq, ur, vq, 1)

9 if L(u, v) == d̄ then
10 foreach q ∈ {0, 1}, r ∈ {0, 1}, s ∈ {0, 1} do
11 if mvqxr == 1 and u(x) exists then
12 w ← u(x)
13 if musws 6= 1 then
14 VM [us]← VM [us] ∪ {ws}
15 insert ws as a child of T (us)
16 musws ← 1

Procedure 14: Mix(xt, vq, il, jm,flag) to merge trees.

1 if flag == 0 then
2 insert jm in T (xt) as a child of il
3 mxtjm ← 1
4 foreach child kn of jm ∈ T (vq) do
5 if mxtkn 6= 1 then Mix (xt, vq, jm, kn, 0)
6 if kn ∈ VM [xt] then
7 Adjust(xt, jm, kn)
8 Mix (xt, vq, jm, kn, 1)

9 if flag == 1 then
10 foreach kn ∈ VM [jm] do
11 if mxtkn 6= 1 then Mix (xt, vq, jm, kn, 0)
12 if kn ∈ VM [xt] then
13 Adjust(xt, jm, kn)
14 Mix (xt, vq, jm, kn, 1)

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 132

T (10)

10

20 41

11 31 51

T (11)

11

41

31 51

T (20)

20

11 31

41

51

T (21)

21

11 31

41

51

T (30)

30

20 40

11

41

5131

(a) New reachability trees.

T (10)

41

51

T (11)

41

31 51

T (20)

41

51

T (21)

41

51

T (30)

41

(b) The pruned unique copy of T (41) for each xt.

Figure 5.13: The updated reachability spanning trees after inserting (1, a, 4) in
Figure 5.11.

by procedure Mix() are given in Figure 5.13(b). Then, each T (xt)

is updated by inserting the corresponding T (41). Finally, all up-

dated reachability trees T (xt) are given in Figure 5.13(a).

5.4.3 Main Algorithm: A Bottom-Up Approach

Having the reachability among bottom-layer variables computed,

this section presents the main pointer analysis algorithm. Given

a well-typed PEG, our algorithm propagates both alias and points-

to reachability information from bottom layer to top layer.

Connecting Layers

In the PEG, the layers are connected via D- and D̄-edges. Let us

safely assume that the reachability summaries on layer k−1 has

been computed. We then focus on propagating the summaries

to the upper layer k.

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 133

The key idea for connecting two layers on the PEG is to gen-

erate new M -paths at layer k w.r.t. any old V -paths at layer

k − 1. On the same layer, any two reachable nodes are joined

via only three kinds of paths, i.e., V -, M - and Pt-paths. The

CFG in Figure 5.2 ensures that both nonterminals M and Pt are

derivable from nonterminal V , i.e., there exists (u, V, v) for all

(u,M, v), (u,Pt , v). Therefore, for each summary edge (u, V, v)

at layer k − 1, there should be a new summary edge (u′,M, v′)

at layer k if both u′ and v′ exist and L(u, u′) = L(v, v′) = d.

In our algorithm, we store such summary edge (u′,M, v′) using

array VM , i.e., v′ ∈ VM [u′] for all (u′,M, v′).

The Add() procedure in Procedure 13 propagates the reacha-

bility summaries from layer k− 1 to layer k by taking advantage

of the D̄-edges (i.e., (u, d̄, v), where l(u) = k and l(v) = k − 1)

connecting any two adjacent layers. Specifically, on lines 9-16,

the procedure searches each node x that are reachable from v at

layer k−1. If the dereferenced node w of x exists at layer k (i.e.,

(w, d̄, x)), it is immediate that the new path p = u, v, . . . , x, w is

a new M -path at layer k. Finally, procedure Add() updates the

corresponding matrix entries and spanning trees.

The memory alias relation (i.e., M -edge) is not transitive.

On lines 10-14 of Mix() procedure, we set flag = 1 to cope with

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 134

the non-transitivity. Note that the Add() and Mix() procedures

insert a new node jm to the reachability spanning tree T (xt) iff

there is a new A- or Ā-edge processed. As a result, the two

procedures never introduce consecutive M -edges to the reacha-

bility spanning trees. On the other hand, if xt reaches jm via

an M -path, xt does not reach the sub trees rooted at kn where

jm reaches kn via an M -path. However, the newly processed A-

or Ā-edge makes kn reachable from xt. We handle this by us-

ing array VM and routine Adjust(). Specifically, array VM [xt]

keeps all nodes vq that are M -reachable from xt. Routine Ad-

just(xt, ur, vq) moves vq to be a child of ur in T (xt) and remove

vq from VM [xt], it is called only if there is a new A- or Ā-edge

processed. Consequently, vq ∈ T (xt) iff there is a V -path joining

them.

Pointer Analysis Algorithm

Our pointer analysis algorithm for well-typed PEG is given in

Algorithm 15. It takes a well-typed PEG G = (V,E) as input

and outputs the reachability matrix for answering any points-to

or alias analysis query.

The functioning of the main algorithm proceeds as follows.

On line 1, the main algorithm pre-processes the input PEG and

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 135

Algorithm 15: Pointer analysis algorithm for well-typed C.

Input : Edge-labeled bidirected PEG G = (V,E);
Output: the reachability matrix M

1 run pre-process pass described in Section 5.4.1
2 Init ()
3 for k ← bottom to top do
4 foreach (i, a, j), (i, ā, j) ∈ Ek do Add (i,L(i, j), j)
5 foreach (i, d, j) ∈ Ek do Add (i,L(i, j), j)

collects the necessary information. The key data structures are

initialized on line 2. On lines 3-5, the reachability matrix is

computed in a bottom-up manner. Specifically, each A-edge and

Ā-edge at layer k is handled first. The reachability information

between adjacent layers is propagated from layer k to k + 1 by

processing D-edges.

Answering Pointer Analysis Query

We then discuss how to use the reachability matrix M to answer

the pointer analysis queries. The detailed procedure for answer-

ing points-to and alias analysis query is given in Procedure 16.

Points-to Query Given two pointer expressions p and q, we locate

the representative nodes in the PEG using He(p) and Ha(q).

Then we check the layer information by comparing l(He(p)) and

l(Ha(q)). If both nodes are on the same layer, we look up the

reachability matrix entry mu0v0. Node u and v are Pt-reachable

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 136

Procedure 16: Query(p, q, flag) to answer the pointer analysis query.

1 u← He(p)
2 if flag is alias then v ← Ha(q)
3 else v ← He(q)
4 if l(u) 6= l(v) then return false

5 if flag is alias and (mu0v0 or mu0v1 or mu1v1 is 1) then
6 return true
7 else if flag is pt and mu0v0 == 1 then
8 return true
9 else

10 return false

in the PEG iff v0 is reachable from u0.

Alias Query Similarly, to answer the alias query w.r.t. p and

q, we first check the layer information by comparing l(He(p))

and l(He(q)). If both nodes are on the same layer, we look up

mu0v0, mu0v1 and mu1v1 entries. If one of them is 1, node v are

M -reachable from u in the PEG. Finally, the query procedure

returns true.

5.4.4 Algorithm Correctness and Complexity Analysis

This section discusses the correctness and the complexity of the

proposed algorithm. We begin with establishing the correctness

theorem.

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 137

Correctness

The correctness of the whole algorithm is proved by an induction

on layers.

First, let us consider the V -reachability at bottom layer with

only A- and Ā-edges. Any trivial V -path is correctly handled by

Algorithm 15, since the Init() procedure called at line 2 marks

each vq as V -reachable from itself, where q ∈ {0, 1}. We prove

the correctness by induction on path length |p| of any non-trivial

V -path.

• Base case. |p| = 1. Every (u, a, v) and (u, ā, v) is inserted

by procedure Add() w.r.t. the state information in Table 5.1,

i.e., reachability between ur and vq is correct for all A- and

Ā-edges.

• Inductive step. Suppose Algorithm 15 correctly finds all V -

paths of length |p− 1|, any non-trivial V -path of length |p|

is generated according to the three cases as follows:

– Case u, v, . . . , v′, where p′ = v, . . . , v′ and |p′| = p − 1.

Let (u,X, v) be the new A- or Ā-edge processed by Al-

gorithm 15, where X ∈ {a, ā}. According to the in-

ductive hypothesis, path p′ is correctly handed by Algo-

rithm 15. As a result, all descendants of v are inserted

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 138

in T (vq). The procedure Add() called at line 4 recur-

sively traverses T (vq) and inserts all unique descendants

to T (uq). Therefore, node v′q is inserted to T (uq) and

the corresponding reachability matrix entry is updated

as well.

– Case u′, . . . , u, v, where p′ = u′, . . . , u and |p′| = p −

1. On line 1 of procedure Add(), all nodes u′ currently

reaches u are traversed. Therefore, when a new edge

(u,X, v) is inserted, procedure Add() correctly finds the

right T (u′q) to insert vq and updates the corresponding

reachability entry. Finally, the new V -path between u′

and v is generated.

– Case u′, . . . , u, v, . . . , v′, where p1 = u′, . . . , u, |p1| 6

|p − 1| and p2 = v, . . . , v′,|p2| 6 |p − 1|. This case

can be thought of as a combination of the previous two

cases. When a new edge (u,X, v) is inserted, procedure

Add() correctly finds u′ that reaches u, and recursively

traverses T (vq) to insert the unique descendant v′ into

T (u′q).

Then, we assume the all-pairs V -reachability on layer l − 1

is correctly computed, we discuss computing V -reachability on

layer l. The following claims hold:

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 139

• All D-edges in the PEG are processed by Algorithm 15 since

line 5 considers all corresponding reverse D̄-edges. The han-

dling of all D̄-edges is done on lines 9-16 in procedure Mix().

Specifically, procedure Mix() correctly generates (u′,M, v′) on

layer l for all summary edge (u, V, v) on layer l−1. In other

words, all non-consecutive M -paths on layer l are generated

for any potential new V -path on layer l.

• On layer l, the reachability information is initially empty.

For any new M -edges (u′,M, v′) generated, node u′q is in-

serted to T (v′q) respecting the fact that v′q is reachable from

u′q. This step essentially simulates the stack in Algorithm 10

for the chain case, i.e., state q is pushed at node u′ and it

is popped at node v′. After initializing the reachability in-

formation on layer l, the other A- and Ā-edges on layer l

are handled similarly to the bottom layer. Therefore, the

reachability information on layer l is correctly handled by

Algorithm 15.

• The V -reachability between nodes u and v on layer l is

computed despite any M -path connecting them. If vq is

M -reachable from uq (i.e., vq ∈ VM [uq]) and the flag is 1,

routine Adjust() adjust vq’s position in T (uq) and remove

it from VM [uq]. If the flag is 0, during the next recursive call

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 140

to procedure Mix(), vq is inserted to T (uq) again respecting

the fact that uq is V -reachable from vq. This maintains the

invariants of reachability spanning trees w.r.t. the definition

in Section 5.4.2.

The correctness on computing V -paths and Pt-paths is essen-

tially the same as M -paths discussed above. Finally, we have the

following theorem:

Theorem 7 (Correctness) Given the CFG in Figure 5.2, Al-

gorithm 15 correctly computes the all-pairs CFL-reachability in-

formation on well-typed PEG.

Complexity

Then we discuss the time complexity of Algorithm 15. We note

that Algorithm 15 calls procedure Mix() to handle all edges in

the PEG. Procedure Mix() handles all D̄-edges on lines 9-16. As

discussed in Section 5.4.4, all M -edges in the PEG are generated

after processing D̄-edges. It is straightforward that the time

spent on all D̄-edges in the PEG is O(n).

On the other hand, all A- and Ā-edges are handled by pro-

cedures Add() and Mix(). Due to the Fact 2, without considering

M -paths on the same layer, the realized string for any V -path

is ā∗a∗, which is a regular language. If the flag is set to be 0,

CHAPTER 5. FAST CFL-REACHABILITY ALGORITHMS 141

the two procedures Add() and Mix() handles each A- and Ā-edge

essentially the same as the previous work on dynamic regular

language path problem [16]. The key distinction is the situation

when flag is set to be 1. In that case, our algorithm maintains

the invariants w.r.t. the definition of reachability spanning trees

by computing V -reachability between nodes u and v on layer l

despite the M -edge between them. The distinction introduces

additional work which is bounded by O(nM̃), where M̃ denotes

the maximum memory alias pairs on one layer. This is because

line 7 in Procedure 13 and lines 7 and 13 in Procedure 14 remove

an M -edge immediately after it has been examined and M -edges

are generated only by processing D̄-edges. As a result, the two

procedures handle all edges in the PEG in O(n(m + M̃)) time.

The space complexity is O(n2) due to the use of reachability

matrix. Combined the analysis, we have the following theorem,

Theorem 8 (Complexity) Given a well-typed PEG with n nodes

and m edges, the inclusion-based pointer analysis problem can be

computed in O(n(m+ M̃)) time with O(n2) space to answer any

online pointer analysis query in O(1) time.

2 End of chapter.

Chapter 6

Application: Scaling an Alias

Analysis for C

To evaluate the effectiveness of the proposed CFL-reachability

algorithm, we apply the CFL-reachability-based alias analysis

on the latest stable releases of widely-used C programs from the

pointer analysis literature. All algorithms used in our evaluation

solve all-pairs CFL-reachability formulated by Zheng and Rug-

ina [97]. The results demonstrate that the alias analysis based

on our all-pairs CFL-reachability algorithm performs extremely

well in practice. For instance, it can analyze the Linux kernel

in about 80 seconds. In particular, we design two sets of experi-

ments to realize various aspects of the performance speedup:

• We use the CFL1 normal form in Figure 5.4 and investigate

the practical benefits of the subcubic CFL-reachability algo-

142

CHAPTER 6. APPLICATION: SCALING AN ALIAS ANALYSIS FOR C 143

Program SLOC #Procs
PEG

#Temps
Nodes # Edges

Gdb-7.5.1 1,828K 10,536 649,564 1,219,788 6,472

Emacs-24.2 254K 3,626 687,691 1,290,200 2,424

Insight-6.8-1a 1,742K 10,507 787,289 1,494,168 7,898

Gimp-2.8.4 702K 17,842 872,681 1,675,546 13,876

Ghostscript-9.07 851K 12,211 1,198,753 2,368,086 6,806

Wine-1.5.25 2,306K 70,923 4,652,983 8,472,950 25,064

Linux-3.8.2 10,601K 138,095 12,807,645 23,398,670 69,840

Table 6.1: Benchmark applications. The SLOC is reported by sloccount counting
only C code.

rithm. We also evaluate the impact of connect component

decomposition in CFL-reachability-based alias analyses for

C.

• We then apply the CC decomposition and compare the per-

formance of three subcubic CFL-reachability algorithms for

alias analysis. Besides our own algorithm, the other two

are traditional subcubic CFL-reachability algorithms using

the two different normal forms described in Figure 5.4. We

also summarize our experiences of scaling all-pairs CFL-

reachability algorithms.

CHAPTER 6. APPLICATION: SCALING AN ALIAS ANALYSIS FOR C 144

6.1 Experimental Setup

Benchmark Selection.

The set of C programs used in our evaluation is described in Ta-

ble 6.1. For each program, we list its number of source lines of

code, its number of procedures, the size of its Program Expres-

sion Graph (PEG), and the number of temporaries introduced

in the traditional inclusion-based pointer analysis. The subject

programs were obtained from the official websites. Gdb is the

GNU debugger; Emacs is a text editor; Insight is a GUI for

Gdb; Gimp is an image processing application; Ghostscript is a

PostScript interpreter and PDF generator; Wine is a Windows

emulator; and Linux is the kernel of the Linux operating system.

PEG Generation.

All C programs used in our evaluation are first processed by

Gcc-4.6.3 for generating aliasing information for each procedure.

The aliasing information is stored as constraint files represented

in four standard forms described in Figure 2.7. We developed

a Perl script to generate the PEGs from the constraint files.

In particular, the temporaries introduced in transforming the

source code to the four standard forms are eliminated, repre-

sented as the “#Temp” column in Figure 6.1. We observe that

CHAPTER 6. APPLICATION: SCALING AN ALIAS ANALYSIS FOR C 145

the number of temporaries is relatively small compared to the

number of pointer variables (i.e., the “#Nodes” in the PEGs).

Implementation.

Both our analysis algorithm and the traditional CFL-reachability

algorithms are implemented in C++ with extensive use of the

Standard Template Library (STL). The Four Russians’ Trick

used in the subcubic CFL-reachability algorithms is implemented

with a combination of Gcc’s own built-in functions operating on

bitvectors. Those built-in functions are each translated to a

single CPU instruction. For example, the bit scan reverse (bsr)

instruction can locate the first set bit, clear the bit and return

its position in one CPU instruction, which can be considered as

constant time. For more bitwise tricks, we refer the reader to

Warren’s book [86] and Andersen’s bit twiddling hacks page1.

All of the executables are compiled with Gcc-4.6.3 with “-

O2” optimization. The algorithms take the same PEGs as input.

Their outputs are verified to ensure consistency and correctness.

Note that our algorithm computes the memory aliases (i.e., the

M -edges) and value aliases (i.e., the V -edges) in two phases.

All experiments were conducted on a Dell Optiplex 780 desktop

with Intel Core2 Quad Q9650 CPU and 8GB RAM, running
1http://graphics.stanford.edu/~seander/bithacks.html

CHAPTER 6. APPLICATION: SCALING AN ALIAS ANALYSIS FOR C 146

Program
Time Memory

Cubic Sub Sub CC Cubic Sub Sub CC

Gdb-7.5.1 2405.62 10.83 8.36 150.54 102.60 75.48

Emacs-24.2 54781.90 128.03 106.60 1095.50 1908.16 900.75

Insight-6.8-1a 665.06 8.65 5.98 116.29 149.57 75.52

Gimp-2.8.4 662.27 8.19 6.30 56.84 51.04 29.91

Ghostscript-9.07 4209.84 28.67 22.15 256.40 271.51 184.47

Wine-1.5.25 8234.29 64.07 38.02 451.28 1448.21 103.09

Linux-3.8.2 31997.00 160.81 119.03 236.44 197.98 93.00

Table 6.2: The performance of the cubic and subcubic alias analysis algorithms
using the CFL1 formal form: time in seconds and memory in MB.

Ubuntu-12.04.

Performance of the Subcubic CFL-Reachability Algorithm

First, we present, for the first time in the literature, the perfor-

mance of the subcubic CFL-reachability algorithm in practice.

We use the CFL1 normal form in Figure 5.4 to compare the

time and memory consumption between the cubic and subcu-

bic CFL-reachability algorithms. We also evaluate the practi-

cal benefits of applying connected component decomposition in

CFL-reachability-based alias analysis.

6.1.1 Time Consumption

Table 6.2 shows the time and memory consumption of both

the cubic and subcubic algorithms computing all-pairs CFL-

reachability using CFL1 normal form. The time and memory

CHAPTER 6. APPLICATION: SCALING AN ALIAS ANALYSIS FOR C 147

consumption is collected differently. Specifically, the running

time columns in Table 6.2 report the accumulated running times

on all PEGs. On the other hand, the memory consumption

columns in Table 6.2 report the maximum memory amount in

the project, since the analysis is intraprocedure and the memory

can be freed before processing the next procedure. The “Sub-

cubic+CC” columns present the performance of applying con-

nected component decomposition for alias analysis (discussed in

Section 6.1.3).

From the running time columns in Table 6.2, we can see that

the traditional cubic all-pairs CFL-reachability algorithm does

not scale well. For example, the cubic algorithm takes about 10

minutes to complete on Gimp, which is already the best running

time result of all programs used in our study. This result explains

why there has been no practical all-pairs CFL-reachability-based

pointer analysis. We note that the subcubic algorithm brings

tremendous speedup in practice. Specifically, the subcubic algo-

rithm using the Four Russians’ Trick is more than 183.2 times

faster than the cubic algorithm on average. The Linux kernel

project takes the subcubic algorithm the longest time to com-

plete. However, it is still within 3 minuets, which is already quite

acceptable for a large-scale project like that. Note take it typ-

CHAPTER 6. APPLICATION: SCALING AN ALIAS ANALYSIS FOR C 148

ically takes more than 30 minutes to compile the Linux kernel

(without executing make in parallel) on the desktop used for our

experiments.

6.1.2 Memory Consumption

The actual memory consumption of the cubic algorithm is slightly

different from the subcubic algorithm. Despite the memory

taken by the iterative computation, most of the memory is taken

by the underlying data structures used to represent the graph.

Specifically, the cubic algorithm typically uses an adjacency list

to store all nodes in the graph. It can be observed from Table 6.1

that the PEGs are quite sparse in practice, with m = O(n) where

n and m represent the number of nodes and edges respectively.

As a result, the space required to store the PEGs in the cubic

algorithm is O(m) = O(n).

On the other hand, the space required to store the PEGs

in the subcubic algorithm is O(n2), because each node needs a

bitvector for representing the summary edges of all nodes in the

graph. Moreover, all the terminals and non-terminals should

be considered to initialize the corresponding bitvectors. For in-

stance, CFL1 contains 4 terminals and 9 non-terminals. The

amounts of optimal space required to represent the largest PEG

CHAPTER 6. APPLICATION: SCALING AN ALIAS ANALYSIS FOR C 149

Program #CC
PEGs in Proc. PEGs in CC

Max. Avg. Max. Avg.

Gdb-7.5.1 66,154 5,162 61.65 4,350 9.82

Emacs-24.2 67,608 22,654 189.66 15,690 10.17

Insight-6.8-1a 75,373 6,273 74.93 4,350 10.45

Gimp-2.8.4 79,572 3,599 48.91 2,693 10.97

Ghostscript-9.07 87,768 8,573 98.17 7,025 13.66

Wine-1.5.25 537,370 20,008 65.61 5,106 8.66

Linux-3.8.2 1,449,718 7,205 92.75 4,755 8.83

Table 6.3: Connected component information on the benchmark programs.

in Wine with 20,008 nodes and Emacs with 22,654 nodes are 620

MB and 795MB respectively. However, only 41MB is required to

store the largest PEG in Gdb with 5162 nodes. From the mem-

ory columns in Table 6.2, we can observe that both the cubic and

subcubic CFL-reachability algorithms demand similar amounts

of memory for the largest PEG. For Emacs and Wine, the sub-

cubic algorithm consume 1.7 times and 3.2 times more memory

respectively, since the two program contains larger PEG.

6.1.3 Impact of CC Decomposition

The scalability of the subcubic CFL-reachability algorithm de-

pends on the size of the input graph, as observed in a recent

work by Zhang et al. [95]. For instance, the 8GB RAM desk-

top used in our experiments can only afford to store a PEG

with at most 72,705 nodes. Therefore, it is infeasible to feed the

CHAPTER 6. APPLICATION: SCALING AN ALIAS ANALYSIS FOR C 150

Program Max PEG in Proc. and CC

Gdb-7.5.1 regex byte regex compile()

Emacs-24.2 dbusbind xd append arg()

Insight-6.8-1a tclExecute TclExecuteByteCode()∗

Gimp-2.8.4 scale-region scale()

Ghostscript-9.07 gxclrast clist playback band()

Wine-1.5.25 image convert pixels()∗

Linux-3.8.2 altera altera execute()

Table 6.4: Procedures that contain the Max PEG in each benchmark program.
Only in Insight and Wine, the Max PEGs are in the CCs belong to different proce-
dures regex byte regex compile and int21 DOSVM Int21Handler. In the remaining
bechmarks, the Max PEG is in the CC of the same procedure.

whole-program PEGs described in Table 6.1 for the alias analy-

sis. However, since the alias analysis is context-insensitive, the

PEG from each procedure can be processed independently. Ta-

ble 6.3 shows that each program’s PEGs typically have less than

200 nodes on average, which can be effectively handled by the

subcubic algorithm in practice.

The CC decomposition can reduce the size of each PEG. The

cost of CC decomposition is negligible, since a simple linear-

time DFS through the PEGs is sufficient. Table 6.3 also shows

the number of connect components, the maximum and average

sizes of PEGs from both procedures and connected components.

Table 6.4 gives the procedure name of the largest PEG. As ex-

pected, the size of PEGs in connected components is about 9

times smaller than the size in procedures.

CHAPTER 6. APPLICATION: SCALING AN ALIAS ANALYSIS FOR C 151

Program

Time Memory

CFL1 CFL2
Our

CFL1 CFL2
Our

M V + M M V + M

Gdb-7.5.1 8.36 16.16 1.89 5.69 75.48 68.59 44.05 56.85

Emacs-24.2 106.60 222.30 39.34 90.80 900.75 783.76 539.86 659.16

Insight-6.8-1a 5.98 12.27 0.87 3.31 75.52 63.68 44.13 56.31

Gimp-2.8.4 6.30 14.13 0.75 3.01 29.91 27.02 18.25 22.58

Ghostscript-9.07 22.15 46.47 5.07 16.23 184.47 171.36 112.22 140.79

Wine-1.5.25 38.02 84.68 5.66 21.19 103.09 96.05 60.29 76.14

Linux-3.8.2 119.03 244.51 21.95 73.45 93.00 80.22 52.08 66.09

Table 6.5: The performance of various subcubic CFL-reachability-based alias anal-
yses: time in seconds and memory in MB.

Reducing the input graph size further improves the perfor-

mance of the underlying alias analysis. As shown in Table 6.2,

the “subcubic+CC” approaches bring additional 1.4 times speedup

in running time and uses 3.5 times less memory than subcubic

approaches on average. We note that the overall performance of

each CFL-reachability algorithm depends on the largest PEGs

encountered during analysis. Emacs and Wine have PEGs that

are larger than those in other programs. Therefore, the two

programs require more memory in subcubic algorithm. When

the CC composition is applied, the underlying subcubic CFL-

reachability algorithm consumes 2.1 times and 14.0 times less

memory on these two programs.

CHAPTER 6. APPLICATION: SCALING AN ALIAS ANALYSIS FOR C 152

Program #Orig. Edges #V -Edges #M-Edges

Gdb-7.5.1 1,219,788 12,904,372 356,075

Emacs-24.2 1,290,200 49,011,799 758,925

Insight-6.8-1a 1,494,168 12,560,471 432,657

Gimp-2.8.4 1,675,546 16,809,343 518,511

Ghostscript-9.07 2,368,086 35,910,829 705,121

Wine-1.5.25 8,472,950 79,613,731 2,769,135

Linux-3.8.2 23,398,670 234,930,383 6,272,658

Table 6.6: Number of original edges vs. number of alias edges.

Program

#Final Edges

CFL1 CFL2
Our

M M + V

Gdb-7.5.1 29,961,321 46,675,387 8,578,778 26,771,729

Emacs-24.2 112,772,537 183,419,945 41,373,828 103,516,235

Insight-6.8-1a 27,573,822 43,826,051 6,651,681 22,948,332

Gimp-2.8.4 33,151,263 57,113,620 7,013,137 26,882,903

Ghostscript-9.07 76,022,402 127,231,348 20,997,042 74,873,044

Wine-1.5.25 161,447,212 272,708,579 35,592,825 124,527,418

Linux-3.8.2 482,622,025 818,188,002 108,039,628 435,178,287

Table 6.7: The graph densities for each algorithm.

6.2 Performance of Subcubic CFL-Reachability-Based

Alias Analysis

In this section, we apply the CC decomposition and compares

our proposed CFL-reachability algorithm for alias analysis with

the traditional subcubic CFL-reachability algorithm using differ-

ent normal forms. The comparisons between various algorithms

is given in Table 6.5. CFL1 and CFL2 are two normal forms

(described in Figure 5.4), which are used in the traditional CFL-

CHAPTER 6. APPLICATION: SCALING AN ALIAS ANALYSIS FOR C 153

reachability algorithm. Specifically, the M column of our ap-

proach indicates the running time of computing only memory

aliases, while the “M + V ” column represents the running time

of computing both memory aliases and value aliases.

All three subcubic CFL-reachability algorithms are working

on small PEGs after the CC decomposition and haveO(n3/log n)

time andO(n2) space complexities. The subcubic CFL-reachability

algorithm using the CFL1 normal form runs faster than that us-

ing CFL2. However, the subcubic CFL-reachability algorithm

based on the CFL2 normal form consumes less memory since

it has less non-terminals. Among the three variants, our algo-

rithm runs the fastest with least memory consumption over all

programs in our evaluation. In particular, our memory alias al-

gorithm runs 5.6 times faster than CFL1 and consumes 1.5 times

less memory than CFL2, and the whole alias analysis algorithm

runs 1.6 times faster than CFL1 and consumes 1.2 times less

memory than CFL2.

In order to understand the performance speedup better, we

calculate the number of alias edges in Table 6.6 and the graph

densities in Table 6.7. The columns in Table 6.6 represent the

number of original edges, and the number of memory and value

alias edges. And the columns in Table 6.7 give all summary edges

CHAPTER 6. APPLICATION: SCALING AN ALIAS ANALYSIS FOR C 154

in the final graph respectively for each program. We first note

that the number of edges m� n2 for all programs, which implies

that the alias analysis graphs are unlikely to be dense in practice.

We also observe that our subcubic CFL-reachability algorithm

computes the least number of summary edges among the three

variants. Specifically, the number of final summary edges in our

memory alias algorithm and whole alias analysis algorithm is 4.0

times and 1.2 times fewer than the CFL1 algorithm and 6.6 times

and 1.9 times fewer than the CFL2 algorithm respectively.

Our subcubic CFL-reachability algorithm computes the mem-

ory aliases based on only the original edges and memory alias

edges in the final graph. The number of memory alias sum-

mary edges are 3.1 times fewer than the number of original

edges. On the other hand, the number of other reachability

summary edges is far greater than the number of original edges.

For example, the V -edges and total final edges in CFL1 are 14.5

times and 31.7 times more. In practice, our subcubic CFL-

reachability algorithm performs better than traditional subcubic

CFL-reachability algorithms reflecting the fact that it computes

far fewer reachability summary edges.

CHAPTER 6. APPLICATION: SCALING AN ALIAS ANALYSIS FOR C 155

6.3 Discussions

Finally, we discuss the main findings of our design and imple-

mentation of the subcubic CFL-reachability algorithms.

Staged CFL-Reachability

Perhaps the most interesting finding in our study is that it is

possible to design a staged CFL-reachability algorithm which

is faster than the traditional CFL-reachability algorithm. In

particular, different stages focus on all-pairs reachability for dif-

ferent summary edges. We show that our memory alias algo-

rithm computes all-pairs memory aliases which is 5.6 times faster

then traditional subcubic CFL-reachability algorithm in prac-

tice. Moreover, our value alias algorithm depends on the results

on memory aliases. In practice, some client analyses may only

be interested in some of the summary edges. For example, the

Zheng and Rugina points-to formulation [97] only concerns the

memory alias edges. In such cases, the staged CFL-reachability

algorithm may be much more efficient than the traditional CFL-

reachability algorithm.

The CFL-reachability algorithm can use the results from dif-

ferent stages to bootstrap each other. Specifically, the later

stages can reuse some of the existing summary edges obtained

CHAPTER 6. APPLICATION: SCALING AN ALIAS ANALYSIS FOR C 156

in previous stages. For example, in our value alias algorithm,

we can reuse all summary edges obtained from the memory alias

algorithm. The value alias algorithm only needs to perform addi-

tional propagations over top-level variables. The key to enable a

staged CFL-reachability algorithm is to exploit the dependencies

between the relevant nonterminals in the CFG .

CFL-Reachability via Partial Summary Edges

Although the worst-case time complexity of the three algorithms

in Table 6.5 is O(n3/ log n), the performance in practice mainly

depends on the number of summary edges the underlying algo-

rithm computes. The input normal forms to the CFL-reachability

algorithm have a non-trivial impact on the algorithm’s practical

performance. In our study, the traditional CFL-reachability al-

gorithm using the CFL1 normal form is 2.1 times faster than that

using the CFL2 normal form. Choosing an appropriate input

normal form for the CFL-reachability algorithm is crucial, since

the traditional CFL-reachability algorithm relies on all summary

edges to propagate reachability information.

In practice, it is possible to design a more efficient CFL-

reachability algorithm using only some of the nonterminal edges.

For example, in our memory alias algorithm, each worklist item

CHAPTER 6. APPLICATION: SCALING AN ALIAS ANALYSIS FOR C 157

uses only the original edges and M -edges to propagate reacha-

bility information. As shown in Table 6.6, the memory edges

are quite sparse. Propagating information through those sparse

edges in our memory alias algorithm yields more than 5.6 times

speedup.

Limitations of the Subcubic Algorithm

The Four Russians’ Trick is the key technique to scale the all-

pairs CFL-reachability algorithm. In particular, it improves the

worst-case complexity of the traditional CFL-reachability algo-

rithm and brings tremendous speedup in practice. However, the

subcubic CFL-reachability algorithm has two sources of limita-

tions.

The first source of limitation is the size of the input graph.

As aforementioned, the 8GB RAM desktop used in our exper-

iments can only afford to store a graph with at most 72,705

nodes. In order to make the subcubic algorithm scale, we need

to reduce the size of the input graphs, since the algorithm has a

quadratic space complexity. As in our alias analysis, the input

graphs are the PEGs of each procedure rather than the whole-

program PEG, which makes the analysis feasible. Moreover, con-

nected component decomposition can further reduce the graph

CHAPTER 6. APPLICATION: SCALING AN ALIAS ANALYSIS FOR C 158

size, which brings 1.4 times speedup.

The second source of limitation is the size of the input gram-

mar. The subcubic algorithm needs to allocate the space for

storing the summary of all nonterminals and terminals from the

input grammar. Reducing the grammar size may have practical

benefits in saving required memory. It is possible to exploit prop-

erties on the input grammar and represent the grammar using

fewer nonterminal. For example, our analysis algorithm uses the

fewest number of nonterminals among the three subcubic algo-

rithms, thus consumes the least amount of memory (Table 6.5).

2 End of chapter.

Chapter 7

Related Work

This thesis contributes to scale CFL-reachability-based alias anal-

ysis for both C and Java. In this chapter, we survey two strands

of closely related work: CFL-reachability and alias analysis.

Moreover, since points-to analysis is the traditional approach to

alias analysis, we summarize the most important developments

in the points-to analysis literature.

7.1 CFL-Reachability

The CFL-reachability framework was initially proposed by Yan-

nakakis [93] for Datalog chain query evaluation. Later, it has

been used to formulate interprocedural dataflow analysis [70],

program slicing [69], shape analysis [66], container analysis for

Java [91], type-based flow analysis [30, 62, 65], and pointer anal-

ysis [54, 74, 78, 80, 90, 95, 97]. The seminal work by Reps

159

CHAPTER 7. RELATED WORK 160

offers insights of formulating program analysis problems using

CFL-reachability [67]. CFL-reachability has shown to be closely

related to set constraints [47, 55]. Moreover, the work done by

Kodumal and Aiken has demonstrated a set constraints for CFL-

reachability intersected with a regular language [48].

The central theme in the CFL formulations is that many pro-

gram analyses have the balanced-parentheses property that can

be captured by Dyck-CFL-reachability [47]. The CFL and Dyck-

CFL-reachability problems are also studied in the context of re-

cursive state machines [9], visibly pushdown languages [8] and

streaming XML [7]. Specially, when the recursive state machines

are restricted to allow a constant number of entry/exit nodes per

module, reachability is solvable in linear-time.

It is well-known that CFL-reachability-based algorithms have

cubic worst-case complexity, commonly known as “the cubic

bottleneck in flow analysis” [37]. Finding more efficient algo-

rithms for CFL-reachability is a difficult problem as any break-

through in CFL-reachability may lead to faster algorithms for

CFL parsing [67]. Chaudhuri showed that the well-known Four

Russians’ Trick [11] could be employed to speed up in the original

CFL-reachability algorithm to immediately yield a subcubic al-

gorithm [20]. Similar techniques were used in Rytter’s work [73]

CHAPTER 7. RELATED WORK 161

for CFL parsing. Besides the subcubic result, Kodumal and

Aiken [47] described a specialized set constraint reduction for

Dyck-CFL-reachability on graphs and Yuan and Eugster [94]

proposed an efficient Dyck-CFL-reachability algorithm on bidi-

rected trees.

This thesis introduces asymptotically faster algorithms for

Dyck-CFL-reachability. Moreover, we also give a fast algorithm

for solving a specific CFL-reachability instance with application

to alias analysis for C.

7.2 Alias Analysis

Alias analysis has been extensively studied in the literature. Its

goal is to decide if two pointer variables may point to the same

memory location during program execution. The problem is first

formulated by Choi et al. [23] and Landi and Ryder [50]. For

more background on alias analysis, we refer readers to a compre-

hensive survey maintained by Wu [4].

Although precise alias information is quite helpful for subse-

quent analysis [26, 75], deciding aliasing is commonly known as

a computationally hard problem [41, 64]. Approximations must

be made for any practical alias analysis. Various techniques have

been proposed to scale alias analyses, such as improving the un-

CHAPTER 7. RELATED WORK 162

derlying points-to analysis [32, 35], making the analysis demand-

driven [38, 92], and using novel data structures [88]. Two most

notable challenges for any practical alias analysis are modeling

the context-sensitivity and recursively data structures. In the

literature, various graph-based approaches has been proposed to

resolve the context sensitivity [19, 31, 51]. On the other hand,

many analysis handles the recursive data structures by limiting

the maximum accesses path [21, 29, 89].

Most state-of-the-art alias analyses have been formulated as

CFL-reachability on edge-labeled graphs [54, 74, 78, 80, 90, 92,

97]. The CFL-reachability-based analyses do not need the points-

to analysis to obtain the points-to sets first. Specifically, Zheng

and Rugina proposed a CFL-reachability formulation on pointer

expression graph (PEG) for C [97]. For Java, Yan et al. [92]

proposed an CFL-reachability formulation on symbolic points-to

graph (SPG) to approximate the precise CFL-reachability-based

alias analysis described by Sridharan et al. [78, 80] and Xu et

al. [90].

This thesis adopts the CFL-reachability formulations on PEG [97]

and SPG [92] for C and Java respectively. We show that our fast

algorithms help dramatically speed up the context-insensitive

alias analysis on both formulations. Moreover, all of the men-

CHAPTER 7. RELATED WORK 163

tioned state-of-the-art alias analyses in this section, except for

the work of Xu et al. [90], are demand-driven, which solving

single-source-single-sink CFL-reachability problem. Our alias

analysis algorithms solve the all-pairs CFL-reachability problem

and scale to large, real-world applications.

7.3 Points-to Analysis

The goal of points-to analysis is to compute a set of memory

locations that a pointer variable may point to during program

execution. Points-to analysis has been recognized as a tradi-

tional approach to alias analysis because aliasing relation can be

decided by consulting the points-to sets of the two variables. We

refer the readers to Hind’s survey paper [40] on a large body of

points-to analysis work.

Like alias analysis, precise points-to analysis is also a com-

putationally hard problem. In this thesis, we focus on flow-

and context-insensitive analysis. In this domain, equality-based

(Steensgaard-style) analysis [81] and inclusion-based (i.e., Andersen-

style) points-to analysis [10] are two important approximations.

Compared with equality-based analysis, inclusion-based analysis

is more precise and also more expensive [79]. A recent paper [13]

concludes that “while better algorithms for the precise flow-

CHAPTER 7. RELATED WORK 164

insensitive analysis are still of theoretical interest, their practical

impact for C programs is likely to be negligible.”

Traditional inclusion-based points-to analysis has been formu-

lated as a dynamic transitive closure problem, with a cubic time

complexity in the worst-case [35, 79]. Over the decade, many

enhancements have been proposed to scale the inclusion-based

pointer analysis, including online cycle elimination [32], projec-

tion merging [82], off-line variable substation [71], improved dy-

namic transitive closure algorithms [35, 38, 59], using better data

structures for points-to sets [12, 88, 98], adopting probabilis-

tic approaches [76], making the analysis paralleled [56, 57] or

demand-driven [39, 80], just to name a few [25, 44, 60, 77].

Inclusion-based points-to analysis for C has been formulated

as a CFL-reachability problem by Reps [67]. Sridharan et al. also

proposed a CFL-reachability formulation for points-to analy-

sis for Java [80]. Several work has been done to improve the

performance of CFL-reachability-based points-to analysis, e.g.,

speeding up computing summary edges using improved strate-

gies [54, 74], applying algorithmic tricks [20] and rolling out

infeasible paths [90] during computation. On the other hand,

the CFL-reachability-based points-to analysis is interesting in

its own right. Compared with traditional inclusion-based anal-

CHAPTER 7. RELATED WORK 165

ysis which has been formulated as a dynamic transitive closure

problem, the CFL-reachability instance works on a fixed edge-

labeled graph such that no new edges are inserted during compu-

tation. In Chapter 5, we exploited the properties of the underly-

ing CFL on both alias analysis and points-to analysis, and pro-

posed asymptotically faster algorithms for solving the all-pairs

CFL-reachability.

2 End of chapter.

Chapter 8

Conclusion

In this chapter, we summarize the main results presented in this

thesis. We then discuss some possible interesting directions as

future work.

8.1 Thesis Summary

In this thesis, we have contributed to both theoretical and prac-

tical developments in scaling CFL-reachability-based alias anal-

ysis. From a theoretical perspective, we have proposed a set

of asymptotically faster algorithms for solving all-pairs CFL-

reachability formulated in two existing state-of-the-art alias anal-

yses. Our algorithms improve the traditional (sub) cubic CFL-

reachability algorithm. From a practical perspective, we have

implemented our CFL-reachability-based alias analysis for both

Java and C. The evaluation has demonstrated that our algo-

166

CHAPTER 8. CONCLUSION 167

rithms perform extremely well in practice and consume less mem-

ory.

In particular, Chapters 3 and 4 have proposed two fast algo-

rithms for solving Dyck-CFL-reachability in O(n) time for bidi-

rected trees and in O(n + m log m) time for bidirected graphs

respectively, and a fast algorithm in O(n(m+ S)) time for solv-

ing general all-pairs Dyck-CFL-reachability. The key insights

behind our algorithms are that the bidirected Dyck-relation is an

equivalence relation and solving the general Dyck-CFL-reachability

problem can be benefited from a known result on dynamically

maintaining the transitive closure. We have also applied our bidi-

rected Dyck-CFL-reachability algorithm to a context-insensitive

alias analysis for Java on SPG [92]. The experimental results

have shown that our graph algorithm help bring orders of mag-

nitude speedup on DaCapo benchmarks.

Later, in Chapters 5 and 6, we have also presented an efficient

subcubic algorithm for solving the all-pairs CFL-reachability for-

mulated in an existing alias analysis for C on PEG [97]. When

the given PEG is restricted to be well-typed, we have given an

asymptotically fast algorithm in O(mn) time. Moreover, we

have also presented the design and implementation of the first

subcubic CFL-reachability-based alias analysis for C. To evalu-

CHAPTER 8. CONCLUSION 168

ate its scalability, we have conducted extensive experiments on

the latest stable releases of the most popular C programs from

the pointer analysis literature. Our results have shown that the

proposed CFL-reachability-based alias analysis scales extremely

well. In particular, it can analyze the latest Linux kernel in

under 80 seconds.

8.2 Future Work

There are several interesting directions of improving CFL-reachability-

based alias analysis which we would like to explore in the future.

First, in this thesis, we have considered the CFL-reachability

formulation for context-insensitive alias analysis. The CFL-reachability

formulation can not be directly adopted for context-sensitive

alias analysis, since the problem is undecidable [68]. Currently,

typical context-sensitive CFL-reachability-based alias analyses [78,

90, 92] adopt a regular language to approximate the procedure

calls/returns. It remains an open problem whether asymptoti-

cally faster algorithms exist for the context-sensitive CFL-reachability-

based alias analysis.

Second, in Chapter 3, we have demonstrated that the bidi-

rected Dyck-CFL-reachability problem on trees can be solved

much faster than the counterpart on graph. It is interesting to

CHAPTER 8. CONCLUSION 169

see whether the same claims hold for the CFL-reachability prob-

lem considered in Chapter 5 (i.e., the inclusion-based pointer

analysis on the tree PEGs). Moreover, it should also be inter-

esting to carry out some empirical work to study the impact of

tree PEGs on real-world C programs. If most of the PEGs in

practice are trees, fast tree algorithms can significantly improve

the performance of CFL-reachability-based pointer analysis.

Last, the time complexities of both the general Dyck-CFL-

reachability algorithm in Chapter 3 and the general CFL-reachability-

based alias analysis algorithm in Chapter 5 are output-sensitive,

i.e., they are related to S- and M -edges in the final graph. The

time complexities of the two algorithms are very hard to improve.

For example, the alias analysis for C presented in Chapter 5 is a

variant of Andersen’s pointer analysis [10], for which the (sub)

cubic worst-case time complexity has been exhibited for many

years. It is indeed a breakthrough if one of the two general al-

gorithms can be improved to O(mn) time.

2 End of chapter.

Bibliography

[1] Cambridge university study states software bugs cost econ-

omy $312 billion per year. http://undo-software.com/

content/press-release-8.

[2] DaCapo benchmark suite. http://dacapobench.org/.

[3] The industrial control systems cyber emergency response

team. http://ics-cert.us-cert.gov/.

[4] Survey of alias analysis. http://www.cs.princeton.edu/

~jqwu/Memory/.

[5] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The De-

sign and Analysis of Computer Algorithms. Addison-Wesley,

1974.

[6] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Com-

pilers: Principles, Techniques, and Tools. Addison Wesley,

second edition, 2006.

170

BIBLIOGRAPHY 171

[7] R. Alur. Marrying words and trees. In PODS, pages 233–

242, 2007.

[8] R. Alur and P. Madhusudan. Visibly pushdown languages.

In Proceedings of the 36th Annual ACM Symposium on The-

ory of Computing (STOC), pages 202–211, 2004.

[9] R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. W.

Reps, and M. Yannakakis. Analysis of recursive state ma-

chines. ACM Transactions on Programming Languages and

Systems, 27(4):786–818, 2005.

[10] L. Andersen. Program analysis and specialization for the C

programming language. PhD thesis, University of Cophen-

hagen, 1994.

[11] V. Arlazarov, E. Dinic, M. Kronrod, and I. Faradzev. On

economic construction of the transitive closure of a directed

graph. Soviet Mathematics Doklady, 11:1209–1210, 1970.

[12] M. Berndl, O. Lhoták, F. Qian, L. J. Hendren, and N. Uma-

nee. Points-to analysis using bdds. In Proceedings of the

ACM SIGPLAN 2003 Conference on Programming Lan-

guage Design and Implementation (PLDI), pages 103–114,

2003.

[13] S. Blackshear, B.-Y. E. Chang, S. Sankaranarayanan, and

BIBLIOGRAPHY 172

M. Sridharan. The flow-insensitive precision of andersen’s

analysis in practice. In Proceedings of the 18th International

Static Analysis Symposium (SAS), pages 60–76, 2011.

[14] E. Bodden, A. Sewe, J. Sinschek, H. Oueslati, and

M. Mezini. Taming reflection: Aiding static analysis in the

presence of reflection and custom class loaders. In Proceed-

ings of the 33rd International Conference on Software En-

gineering (ICSE), pages 241–250, 2011.

[15] B. W. Boehm and V. R. Basili. Software defect reduction

top 10 list. IEEE Computer, 34(1):135–137, 2001.

[16] A. L. Buchsbaum, P. C. Kanellakis, and J. S. Vitter. A

data structure for arc insertion and regular path finding. In

Proceedings of the First Annual ACM-SIAM Symposium on

Discrete Algorithms (SODA), pages 22–31, 1990.

[17] V. T. Chakaravarthy. New results on the computability and

complexity of points-to analysis. In Proceedings of the 30th

SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages (POPL), pages 115–125, 2003.

[18] T. M. Chan. All-pairs shortest paths for unweighted undi-

rected graphs in o(mn) time. In Proceedings of the Sev-

BIBLIOGRAPHY 173

enteenth Annual ACM-SIAM Symposium on Discrete Algo-

rithms (SODA), pages 514–523, 2006.

[19] R. Chatterjee, B. G. Ryder, and W. Landi. Relevant con-

text inference. In Proceedings of the 26th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Lan-

guages (POPL), pages 133–146, 1999.

[20] S. Chaudhuri. Subcubic algorithms for recursive state

machines. In Proceedings of the 35th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Lan-

guages (POPL), pages 159–169, 2008.

[21] B.-C. Cheng and W. mei W. Hwu. Modular interprocedural

pointer analysis using access paths: design, implementation,

and evaluation. In Proceedings of the 2000 ACM SIGPLAN

Conference on Programming Language Design and Imple-

mentation (PLDI), pages 57–69, 2000.

[22] B. Chess and J. West. Secure programming with static anal-

ysis. Addison-Wesley Professional, 2007.

[23] J.-D. Choi, M. G. Burke, and P. R. Carini. Efficient flow-

sensitive interprocedural computation of pointer-induced

aliases and side effects. In POPL, pages 232–245, 1993.

BIBLIOGRAPHY 174

[24] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.

Introduction to Algorithms. MIT Press, third edition, 2009.

[25] M. Das. Unification-based pointer analysis with directional

assignments. In PLDI, pages 35–46, 2000.

[26] M. Das, B. Liblit, M. Fähndrich, and J. Rehof. Estimating

the impact of scalable pointer analysis on optimization. In

Proceedings of the 8th International Static Analysis Sympo-

sium (SAS), pages 260–278, 2001.

[27] M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive

program verification in polynomial time. In Proceedings

of the 2002 ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), pages 57–68,

2002.

[28] A. Deshpande and D. Riehle. The total growth of open

source. In Proceedings of the 4th International Conference

on Open Source Systems (OSS), pages 197–209, 2008.

[29] A. Deutsch. Interprocedural may-alias analysis for pointers:

Beyond k-limiting. In Proceedings of the ACM SIGPLAN’94

Conference on Programming Language Design and Imple-

mentation (PLDI), pages 230–241, 1994.

[30] C. Earl, I. Sergey, M. Might, and D. V. Horn. Introspective

BIBLIOGRAPHY 175

pushdown analysis of higher-order programs. In ICFP, pages

177–188, 2012.

[31] M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive

interprocedural points-to analysis in the presence of function

pointers. In Proceedings of the ACM SIGPLAN’94 Confer-

ence on Programming Language Design and Implementation

(PLDI), pages 242–256, 1994.

[32] M. Fähndrich, J. S. Foster, Z. Su, and A. Aiken. Partial

online cycle elimination in inclusion constraint graphs. In

Proceedings of the 1998 ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation (PLDI),

pages 85–96, 1998.

[33] R. Ghiya, D. M. Lavery, and D. C. Sehr. On the impor-

tance of points-to analysis and other memory disambigua-

tion methods for c programs. In Proceedings of the 2001

ACM SIGPLAN Conference on Programming Language De-

sign and Implementation (PLDI), pages 47–58, 2001.

[34] B. Hardekopf. personal communication, 2012.

[35] B. Hardekopf and C. Lin. The ant and the grasshopper:

Fast and accurate pointer analysis for millions of lines of

code. In Proceedings of the ACM SIGPLAN 2007 Confer-

BIBLIOGRAPHY 176

ence on Programming Language Design and Implementation

(PLDI), pages 290–299, 2007.

[36] B. C. Hardekopf. Pointer analysis: building a foundation

for effective program analysis. PhD thesis, The University

of Texas at Austin, 2009.

[37] N. Heintze and D. A. McAllester. On the cubic bottleneck

in subtyping and flow analysis. In Proceedings of the 12th

Annual IEEE Symposium on Logic in Computer Science

(LICS), pages 342–351, 1997.

[38] N. Heintze and O. Tardieu. Ultra-fast aliasing analysis using

CLA: A million lines of C code in a second. In Proceedings

of the 2001 ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), pages 254–

263, 2001.

[39] N. Heintze and O. Tardieu. Demand-driven pointer anal-

ysis. In Proceedings of the 2001 ACM SIGPLAN Confer-

ence on Programming Language Design and Implementation

(PLDI), pages 24–34, 2001.

[40] M. Hind. Pointer analysis: Haven’t we solved this problem

yet? In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT

BIBLIOGRAPHY 177

Workshop on Program Analysis For Software Tools and En-

gineering (PASTE), pages 54–61, 2001.

[41] S. Horwitz. Precise flow-insensitive may-alias analysis is NP-

Hard. ACM Transactions on Programming Languages and

Systems, 19(1):1–6, 1997.

[42] S. Horwitz, T. W. Reps, and D. Binkley. Interprocedural

slicing using dependence graphs. ACM Transactions on Pro-

gramming Languages and Systems, 12(1):26–60, 1990.

[43] G. F. Italiano. Amortized efficiency of a path retrieval

data structure. Theoretical Computer Science, 48(3):273–

281, 1986.

[44] V. Kahlon. Bootstrapping: A technique for scalable flow

and context-sensitive pointer alias analysis. In PLDI, pages

249–259, 2008.

[45] B. W. Kernighan and D. Ritchie. The C Programming Lan-

guage. Prentice-Hall, second edition, 1988.

[46] U. P. Khedker, A. Sanyal, and B. Sathe. Data Flow Analysis

- Theory and Practice. CRC Press, 2009.

[47] J. Kodumal and A. Aiken. The set constraint/CFL reach-

ability connection in practice. In Proceedings of the ACM

BIBLIOGRAPHY 178

SIGPLAN 2004 Conference on Programming Language De-

sign and Implementation (PLDI), pages 207–218, 2004.

[48] J. Kodumal and A. Aiken. Regularly annotated set con-

straints. In Proceedings of the ACM SIGPLAN 2007 Confer-

ence on Programming Language Design and Implementation

(PLDI), pages 331–341, 2007.

[49] W. Landi. Undecidability of static analysis. ACM Letters on

Programming Languages and Systems, 1(4):323–337, 1992.

[50] W. Landi and B. G. Ryder. A safe approximate algorithm

for interprocedural pointer aliasing. In PLDI, pages 235–

248, 1992.

[51] W. Landi, B. G. Ryder, and S. Zhang. Interprocedural side

effect analysis with pointer aliasing. In Proceedings of the

ACM SIGPLAN ’93 Conference on Programming Language

Design and Implementation (PLDI), pages 56–67, 1993.

[52] L. Lee. Fast context-free grammar parsing requires fast

boolean matrix multiplication. Journal of the ACM, 49(1):

1–15, 2002.

[53] M. M. Lehman and F. N. Parr. Program evolution and its

impact on software engineering. In Proceedings of the 2nd

BIBLIOGRAPHY 179

International Conference on Software Engineering (ICSE),

pages 350–357, 1976.

[54] Y. Lu, L. Shang, X. Xie, and J. Xue. An incremental points-

to analysis with cfl-reachability. In Proceedings of the 22nd

International Conference on Compiler Construction (CC),

pages 61–81, 2013.

[55] D. Melski and T. W. Reps. Interconvertibility of a class of

set constraints and context-free-language reachability. The-

oretical Computer Science, 248(1-2):29–98, 2000.

[56] M. Méndez-Lojo, A. Mathew, and K. Pingali. Parallel

inclusion-based points-to analysis. In OOPSLA, pages 428–

443, 2010.

[57] M. Méndez-Lojo, M. Burtscher, and K. Pingali. A gpu

implementation of inclusion-based points-to analysis. In

PPOPP, pages 107–116, 2012.

[58] F. Nielson, H. R. Nielson, and C. Hankin. Principles of

Program Analysis. Springer, 2005.

[59] D. J. Pearce, P. H. J. Kelly, and C. Hankin. Efficient field-

sensitive pointer analysis of c. ACM Transactions on Pro-

gramming Languages and Systems, 30(1), 2007.

BIBLIOGRAPHY 180

[60] F. M. Q. Pereira and D. Berlin. Wave propagation and

deep propagation for pointer analysis. In Proceedings of the

7th International Symposium on Code Generation and Op-

timization (CGO), pages 126–135, 2009.

[61] E. L. Post. A variant of a recursively unsolvable problem.

Bulletin of the American Mathematical Society, 52(4):264–

268, 1946.

[62] P. Pratikakis, J. S. Foster, and M. Hicks. Existential label

flow inference via CFL reachability. In Proceedings of the

13th International Static Analysis Symposium (SAS), pages

88–106, 2006.

[63] P. Pratikakis, J. S. Foster, and M. Hicks. Locksmith: Prac-

tical static race detection for C. ACM Transactions on Pro-

gramming Languages and Systems, 33(1):3, 2011.

[64] G. Ramalingam. The undecidability of aliasing. ACM

Transactions on Programming Languages and Systems, 16

(5):1467–1471, 1994.

[65] J. Rehof and M. Fähndrich. Type-base flow analysis: from

polymorphic subtyping to CFL-reachability. In Proceedings

of the 28th ACM SIGPLAN-SIGACT symposium on Princi-

ples of programming languages (POPL), pages 54–66, 2001.

BIBLIOGRAPHY 181

[66] T. W. Reps. Shape analysis as a generalized path problem.

In Proceedings of the 1995 ACM SIGPLAN symposium on

Partial evaluation and semantics-based program manipula-

tion (PEPM), pages 1–11, 1995.

[67] T. W. Reps. Program analysis via graph reachability. In-

formation & Software Technology, 40(11-12):701–726, 1998.

[68] T. W. Reps. Undecidability of context-sensitive data-

independence analysis. ACM Transactions on Programming

Languages and Systems, 22(1):162–186, 2000.

[69] T. W. Reps, S. Horwitz, S. Sagiv, and G. Rosay. Speed-

ing up slicing. In Proceedings of the 2nd ACM SIGSOFT

symposium on Foundations of software engineering (FSE),

pages 11–20, 1994.

[70] T. W. Reps, S. Horwitz, and S. Sagiv. Precise interproce-

dural dataflow analysis via graph reachability. In Proceed-

ings of the 22nd ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (POPL), pages 49–

61, 1995.

[71] A. Rountev and S. Chandra. Off-line variable substitution

for scaling points-to analysis. In Proceedings of the 2000

BIBLIOGRAPHY 182

ACM SIGPLAN Conference on Programming Language De-

sign and Implementation (PLDI), pages 47–56, 2000.

[72] B. G. Ryder. Dimensions of precision in reference analysis

of object-oriented programming languages. In Proceedings

of the 12th International Conference on Compiler Construc-

tion (CC), pages 126–137, 2003.

[73] W. Rytter. Fast recognition of pushdown automaton and

context-free languages. Information and Control, 67(1-3):

12–22, 1985.

[74] L. Shang, X. Xie, and J. Xue. On-demand dynamic

summary-based points-to analysis. In CGO, pages 264–274,

2012.

[75] M. Shapiro and S. Horwitz. The effects of the presision

of pointer analysis. In Proceedings of the 4th International

Static Analysis Symposium (SAS), pages 16–34, 1997.

[76] J. D. Silva and J. G. Steffan. A probabilistic pointer anal-

ysis for speculative optimizations. In Proceedings of the

12th International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS),

pages 416–425, 2006.

[77] L. Simon. Optimizing pointer analysis using bisimilarity. In

BIBLIOGRAPHY 183

Proceedings of the 16th International Static Analysis Sym-

posium (SAS), pages 222–237, 2009.

[78] M. Sridharan and R. Bod́ık. Refinement-based context-

sensitive points-to analysis for Java. In Proceedings of the

ACM SIGPLAN 2006 Conference on Programming Lan-

guage Design and Implementation (PLDI), pages 387–400,

2006.

[79] M. Sridharan and S. J. Fink. The complexity of andersen’s

analysis in practice. In SAS, pages 205–221, 2009.

[80] M. Sridharan, D. Gopan, L. Shan, and R. Bod́ık. Demand-

driven points-to analysis for Java. In Proceedings of

the 20th Annual ACM SIGPLAN Conference on Object-

Oriented Programming, Systems, Languages, and Applica-

tions (OOPSLA), pages 59–76, 2005.

[81] B. Steensgaard. Points-to analysis in almost linear time.

In Proceedings of the 23rd ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages (POPL),

pages 32–41, 1996.

[82] Z. Su, M. Fähndrich, and A. Aiken. Projection merging: Re-

ducing redundancies in inclusion constraint graphs. In Pro-

ceedings of the 27th ACM SIGPLAN-SIGACT symposium

BIBLIOGRAPHY 184

on Principles of programming languages (POPL), pages 81–

95, 2000.

[83] G. Tassey. The economic impacts of inadequate infrastruc-

ture for software testing. Technical report, National Insti-

tute of Standards and Technology, 2002.

[84] R. Vallée-Rai, E. Gagnon, L. J. Hendren, P. Lam, P. Pom-

inville, and V. Sundaresan. Optimizing java bytecode using

the Soot framework: Is it feasible? In Proceedings of the 9th

International Conference on Compiler Construction (CC),

pages 18–34, 2000.

[85] V. Vassilevska. Efficient algorithms for clique problems. In-

formation Processing Letters, 109(4):254–257, 2009.

[86] H. S. Warren. Hacker’s Delight. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 2002.

[87] J. Whaley. Context-sensitive pointer analysis using binary

decision diagrams. PhD thesis, Stanford University, 2007.

[88] J. Whaley and M. S. Lam. Cloning-based context-sensitive

pointer alias analysis using binary decision diagrams. In

PLDI, pages 131–144, 2004.

[89] R. P. Wilson and M. S. Lam. Efficient context-sensitive

BIBLIOGRAPHY 185

pointer analysis for c programs. In Proceedings of the ACM

SIGPLAN’95 Conference on Programming Language Design

and Implementation (PLDI), pages 1–, 1995.

[90] G. Xu, A. Rountev, and M. Sridharan. Scaling CFL-

reachability-based points-to analysis using context-sensitive

must-not-alias analysis. In Proceedings of the 23rd European

Conference on Object-Oriented Programming (ECOOP),

pages 98–122, 2009.

[91] G. H. Xu and A. Rountev. Detecting inefficiently-used con-

tainers to avoid bloat. In Proceedings of the 2010 ACM SIG-

PLAN Conference on Programming Language Design and

Implementation (PLDI), pages 160–173, 2010.

[92] D. Yan, G. H. Xu, and A. Rountev. Demand-driven context-

sensitive alias analysis for Java. In Proceedings of the 20th

International Symposium on Software Testing and Analysis

(ISSTA), pages 155–165, 2011.

[93] M. Yannakakis. Graph-theoretic methods in database the-

ory. In Proceedings of the 9th ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems

(PODS), pages 230–242, 1990.

[94] H. Yuan and P. T. Eugster. An efficient algorithm for solving

BIBLIOGRAPHY 186

the Dyck-CFL reachability problem on trees. In Proceedings

of the 18th European Symposium on Programming (ESOP),

pages 175–189, 2009.

[95] Q. Zhang, M. R. Lyu, H. Yuan, and Z. Su. Fast algorithms

for dyck-cfl-reachability with applications to alias analysis.

In Proceedings of the 34th ACM SIGPLAN conference on

Programming language design and implementation (PLDI),

pages 435–446, 2013.

[96] S. Zhang, B. G. Ryder, and W. Landi. Program decomposi-

tion for pointer aliasing: A step toward practical analyses.

In SIGSOFT FSE, pages 81–92, 1996.

[97] X. Zheng and R. Rugina. Demand-driven alias analy-

sis for C. In Proceedings of the 35th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Lan-

guages (POPL), pages 197–208, 2008.

[98] J. Zhu and S. Calman. Symbolic pointer analysis revis-

ited. In Proceedings of the ACM SIGPLAN 2004 Confer-

ence on Programming Language Design and Implementation

(PLDI), pages 145–157, 2004.

