
Efficient Subcubic Alias Analysis for C

Qirun Zhang† Xiao Xiao† Charles Zhang† Hao Yuan‡ Zhendong Su§
†The Hong Kong University of Science and Technology ‡BOPU Technologies §University of California, Davis

{qrzhang, richardxx, charlesz}@cse.ust.hk hao@bopufund.com su@cs.ucdavis.edu

Abstract
Inclusion-based alias analysis for C can be formulated as a
context-free language (CFL) reachability problem. It is well
known that the traditional cubic CFL-reachability algorithm
does not scale well in practice. We present a highly scalable
and efficient CFL-reachability-based alias analysis for C. The
key novelty of our algorithm is to propagate reachability
information along only original graph edges and bypass a
large portion of summary edges, while the traditional CFL-
reachability algorithm propagates along all summary edges.
We also utilize the Four Russians’ Trick — a key enabling
technique in the subcubic CFL-reachability algorithm — in
our alias analysis. We have implemented our subcubic alias
analysis and conducted extensive experiments on widely-used
C programs from the pointer analysis literature. The results
demonstrate that our alias analysis scales extremely well in
practice. In particular, it can analyze the recent Linux kernel
(which consists of 10M SLOC) in about 30 seconds.

Categories and Subject Descriptors D.3.4 [Processors]:
Compilers; F.3.2 [Semantics of Programming Languages]:
Program Analysis

General Terms Algorithms, Languages, Experimentation

Keywords Alias analysis, CFL-reachability

1. Introduction
Programs written in C and Java make extensive use of point-
ers. Determining pointer aliasing is one of the fundamental
static analysis problems [24, 29]. Given two pointers, the
general approach to alias analysis is to check whether their
points-to sets intersect [18]. In practice, many client applica-
tions query only alias information, and the general points-to-
based approach is inefficient for answering alias queries. For

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
OOPSLA ’14, October 20–24, 2014, Portland, OR, USA.
Copyright c© 2014 ACM 978-1-4503-2585-1/14/10. . . $15.00.
http://dx.doi.org/10.1145/2660193.2660213

example, generating the data dependencies for a data-race
detector [26] with points-to information is found to be over
100 times slower than using alias information [48]. Although
alias information can be computed by performing matrix
multiplication over suitable representations of points-to and
pointed-by information, the computation is typically both
time- and memory-consuming [48]. Thus, it is desirable to
have an efficient alias analysis that directly computes alias
information.

Alias analysis can be carried out either exhaustively or in a
demand-driven fashion. Almost all state-of-the-art alias anal-
yses are demand-driven [37, 38, 40, 50, 54] and have been
formulated as a context-free language (CFL) reachability
problem [32, 51]. The CFL-reachability-based alias analysis
achieves good precision and can be naturally extended to
model field sensitivity. For instance, Zheng and Rugina [54]
developed a demand-driven alias analysis for C, with preci-
sion equivalent to an inclusion-based (i.e., Andersen-style)
points-to analysis [3]. As for Java, Yan et al. [50] designed an
efficient context- and field-sensitive alias analysis, followed
by Shang et al.’s improved algorithm using dynamic method
summaries [37]. Demand-driven alias analysis computes so-
lutions w.r.t. given queries. However, for CFL-reachability-
based approaches, computing reachability between two nodes
may resort to a graph traversal among all nodes in the worst
case [32, 52]. Consequently, in practice, the demand-driven
approach can take a long time on specific queries. For in-
stance, using 10ms time budget for each query, the alias anal-
ysis developed by Yan et al. takes 834 seconds to complete
on even the smallest subject compress [50].

Exhaustive alias analysis, on the other hand, computes all-
pairs alias information and processes each query in constant
time [9, 17, 39, 49, 52]. In many cases, exhaustive alias
analysis is complementary to demand-driven analysis. For
example, it becomes quite useful when a client application
needs to track the global alias information and find all aliased
pointers [41, 44]. The all-pairs information is a prerequisite
for persistent pointer information [48], and can also be used
to discard the must-not-alias pointers [49]. Moreover, one
of the key techniques in the state-of-the-art demand-driven
alias analyses is using all-pairs alias summaries for each
procedure [37, 50].

However, computing all-pairs CFL-reachability (i.e., ex-
haustive analysis) is considerably more expensive than its
single-source-single-sink counterpart (i.e., demand-driven
analysis). There has been much less development of CFL-
reachability-based alias analysis targeting all-pairs reachabil-
ity [49, 52]. The current practice of solving the all-pairs CFL-
reachability problem, resorting to the popular dynamic pro-
gramming style algorithm [34, 51], takes O(n3) time, where
n denotes the number of nodes (i.e., pointers). Consequently,
straightforward implementations are ill-suited for handling
real-world, large applications. Although Chaudhuri [8] pro-
posed a subcubic all-pairs CFL-reachability algorithm, its
potential benefits in practice have not been reported.

In this paper, we present an efficient, exhaustive alias
analysis for C that solves all-pairs CFL-reachability on pro-
gram expression graphs (PEGs) [54]. The main novelty of
our algorithm is to compute CFL-reachability based on the
original PEG edges and existing summary edges representing
only memory aliases, while the traditional CFL-reachability
algorithm computes all summary edges w.r.t. the given gram-
mar [32, 51]. We also utilize the Four Russians’ Trick [4]
— a key enabling technique in Chaudhuri’s subcubic CFL-
reachability algorithm [8] — in our analysis. We have imple-
mented our alias analysis and conducted extensive evaluations
on a set of C programs with size ranging from 200K to 10M
SLOC. In particular, we compare our algorithm with the tra-
ditional cubic CFL-reachability algorithm and Chaudhuri’s
subcubic algorithm, respectively. The results demonstrate that
our alias analysis performs extremely well on recent stable
releases of these C programs.

In summary, we make the following main contributions:

• We develop an efficient subcubic alias analysis for C.
Our analysis algorithm solves all-pairs CFL-reachability
on PEGs [54]. The experimental results show that our
algorithm is three orders faster than the traditional CFL-
reachability algorithm [32, 51], and five times faster than
Chaudhuri’s subcubic algorithm [8].
• We conduct large-scale experiments on recent stable

releases of popular C programs used in the pointer analysis
literature. To the best of our knowledge, this is the first
study demonstrating the benefits of subcubic all-pairs
alias analyses. Particularly, our alias analysis is able to
analyze the 10M SLOC Linux kernel in about 30 seconds.

The rest of the paper is structured as follows. Section 2
reviews background materials on CFL-reachability-based
alias analysis. Section 3 presents our subcubic alias analysis
algorithm. Section 4 describes our evaluation comparing the
traditional cubic CFL-reachability algorithm, Chaudhuri’s
subcubic algorithm and our new algorithm, using the client
alias analysis. Section 5 surveys related work, and Section 6
concludes.

a ∈ Addresses F avar | aheap

e ∈ Expressions F ∗e | a
s ∈ Statements F ∗e1 B e2

Figure 1. Core syntax of C pointers.

2. Preliminaries
In this section, we review alias analysis and CFL-reachability.

2.1 CFL-Reachability
Context-free language (CFL) reachability [32, 51] is an exten-
sion to standard graph reachability. Let CFG = (Σ,N, P, S)
be a context-free grammar with an alphabet Σ, nontermi-
nal symbols N, production rules P and start symbol S .
Given a context-free grammar CFG = (Σ,N, P, S) and a di-
rected graph G = (V, E) with each edge (u, v) ∈ E labeled
by a terminal L(u, v) from the alphabet Σ or ε, each path
p = v0, v1, v2, . . . , vm in G realizes a string R(p) over the
alphabet by concatenating the edge labels in the path in or-
der, i.e., R(p) = L(v0, v1)L(v1, v2) . . .L(vm−1, vm). Let X be a
nonterminal, we define X-paths as follows:

Definition 1 (X-path). A path p = u, . . . , v in G is an X-path
if the realized string R(p) can be derived from the nonterminal
symbol X ∈ N, represented as a summary edge (u, X, v).

Since an X-path also represents a summary edge, we use the
terms X-path and X-edge interchangeably.

2.2 Pointer Expression Graphs
The input to our algorithm is a bidirected graph, known as
a Pointer Expression Graph (PEG) [54]. A PEG represents
the given C program in a canonical form that consists of
pointer assignments. The pointer analysis based on PEGs
is flow-insensitive, therefore, control flow between pointer
assignments is irrelevant. PEGs model the core C-style
pointer language shown in Figure 1. PEGs also handle
additional C language features (e.g., arrays, structures, and
pointer arithmetics), as detailed by Zheng and Rugina [54,
Section 6.1].

There are three basic ingredients in the core language
in Figure 1: memory addresses a ∈ Addresses, pointer
expressions e ∈ Expressions and pointer statements s ∈
Statements. Memory addresses model the symbolic addresses
of variables, and can be obtained via either the address-of
operator (e.g., &x) or memory allocation (e.g., malloc()),
denoted as avar and aheap, respectively. Pointer expressions
model the behavior of the indirection operator (e.g., *x)
in C. Pointer variables are allowed by arbitrary pointer
dereferences. Finally, pointer statements model program
statements that manipulate pointers.

A PEG G = (V, E) is a graph representation that depicts
the canonical form of all pointer statements from the input
C program. In a PEG, each node v ∈ V represents a pointer
expression e. A PEG also contains two kinds of edges:

M F d̄ V d (ZR1)
V F (M? ā)∗ M? (a M?)∗ (ZR2)

Figure 2. The CFL-reachability formulation for C alias
analysis.

M

V

V
d̄ d

MM

S 1

S 2

S 3

S 4

aā

ā a

a

a

Figure 3. The recursive state machines.

• Pointer dereference edges (D-edges): For each pointer
deference ∗e, there is a directed edge from e to ∗e labeled
by d. Let the nodes representing e and ∗e be u and v,
respectively. We denote such labeled edges as (u, d, v) ∈
E.
• Pointer assignment edges (A-edges): For each assignment

statement ∗e1 B e2, there is a directed edge from e2 (as
node u) to ∗e1 (as node v) labeled by a. We denote it as
(u, a, v) ∈ E.

For example, the top-level pointer variables are repre-
sented as the nodes without outgoing D-edges. Moreover,
the address-taken variables are represented as the nodes with-
out incomingD- orA-edges. For eachD-edge andA-edge
in the PEG, there always exist corresponding reverse D̄- and
Ā-edges in the opposite direction, i.e., ∀(u, d, v), (u, a, v) ∈ E,
we have (v, d̄, u), (v, ā, u) ∈ E. Therefore, PEGs are bidi-
rected. Note that the bidirectedness is a prerequisite for CFL-
reachability-based formulations of pointer analysis [32].

2.3 The Zheng-Rugina Alias Analysis Formulation
In a PEG, the alias analysis problem is formulated by the
CFG shown in Figure 2, using EBNF notation. The CFG
can also be represented using recursive state machines [2].
The equivalent recursive state machines of Zheng-Rugina
formulation are adopted in Figure 3.

The formulation distinguishes two kinds of aliases:

int *a,*b;

int *c,*d,*e;

b = a;

c = &b;

*d = *c;

*c = e;

(a) A code snippet.

a b

&b c

*c

&c

*de

&d

d

(b) Its PEG.

Figure 4. An example of alias analysis with the PEG. In
the PEG, dotted edges representD-edges and solid edgesA-
edges. The reverse edges (i.e., Ā- and D̄-edges) are omitted
for brevity.

• Memory aliases (M): two pointer variables are memory
aliases if they denote the same memory location.
• Value aliases (V): two pointer variables are value aliases

if they are evaluated to the same pointer value.

According to the grammar, nodes u and v in the PEG
are aliases if there exist an M-path or V-path between them.
Moreover, the memory aliases and value aliases, represented
as summary edges (u,M, v) and (u,V, v), can be considered as
binary relations on all node pairs. Following the discussion
by Zheng and Rugina [54], we summarize the properties on
the M and V relations as follows:

• V is nullable, M is not nullable;
• Both V and M are symmetric;
• V is reflexive, M is reflexive for non-address-taken vari-

ables;
• Neither V nor M is transitive.

Finally, we give an analysis example that summarizes the
above discussions.

Example 1. Figure 4 gives an example of alias analysis using
a PEG. The C code snippet (left) and its PEG (right) are
shown. In the PEG, nodes b and *c are memory aliases
because the realized string R(p) of path p = b, &b, c, *c is

“d̄ad”, which can be generated from M in Figure 2. Similarly,
nodes a and *d are value aliases since the realized string

“ad̄ada” can be generated from V. Note that V is not transitive.
In the PEG, nodes a and *d, nodes *d and e are both value
aliases. However, nodes a and e are not value aliases since
the realized string “ad̄adā” cannot be generated from V.

2.4 Advantages of PEG
Alias analysis for C via CFL-reachability on PEGs has several
advantages over traditional pointer analysis formulated as a
dynamic transitive closure problem. We discuss some of the
advantages below.

The most attractive feature is that PEGs depict the complex
pointer assignments (e.g., *d = *c) directly without introduc-
ing any temporaries. As discussed in Appendix A, traditional
inclusion-based pointer analyses need to transfer pointer state-

ments into normal forms. These transformations may cause
precision loss, since they introduce additional points-to or
alias pairs to the original program [5, 6, 20]. For example,
they may introduce a temporary variable x to break the assign-
ment *d = *c in Figure 4(b) into two statements *d = x and
x = *c, respectively. However, in the PEG representation,
the pointer assignment is directly represented as anA-edge
(*c, a, *d).

In PEGs, it is impossible for a variable in one connected
component to be aliased with variables from other connected
components. Therefore, PEGs can be decomposed before
alias computation. Furthermore, we can reduce the memory
consumption of alias analysis by separately processing each
disconnected PEG. In contrast, for a traditional inclusion-
based pointer analysis formulated as a dynamic transitive
closure problem, it is difficult to distinguish the connected
components because all edges in the graph represent points-
to relationship and new edges can be inserted during the
transitive closure computation [14]. The full reachability
information of the constraint graph is known only after the
points-to analysis, which cannot be exploited to optimize
memory usage. For example, in Figure 4(b), variables e and
b are connected only if variable c is resolved to point to
b. In the literature, there has been work that heuristically
determines the components and performs analysis on each
component independently [21, 53]. However, the idea of
connected component decomposition on PEGs is quite natural
and can be performed using a simple depth-first search (DFS).
Consequently, the CFL-reachability algorithm can work on
each connected component of potentially much smaller size
to achieve better performance.

3. Alias Analysis Algorithm
In this section, we present our alias analysis algorithm for C.
Our algorithm takes PEGs as input and computes all-pairs
CFL-reachability based on the Zheng-Rugina formulation.
We begin by illustrating the basic idea of our algorithm
(Section 3.1). We then describe our technique for reachability
information propagation (Section 3.2), and give the alias
analysis algorithm (Section 3.3). Finally, we describe how to
apply the Four Russians’ Trick to our algorithm (Section 3.4).

3.1 Basic Idea
Let us first discuss value aliases (V) concerned with only
A- and Ā-edges (i.e., without D- or D̄-edges). Then, we
can safely substitute every occurrence of M with ε in rule
(ZR2) from Figure 2. Therefore, V now generates the regu-
lar language ā∗a∗. We depict the equivalent finite state ma-
chine along with the reachability propagation illustration in
Figure 5. Specifically, Figure 5(a) shows the reachability
propagation of an arbitrary summary edge (u, X, v), where X
corresponds to either state 1 or 2 in Figure 5(b). To generate
new summary edges in Figure 5(a), it suffices to traverse the
outgoing edges of node v. All these traversed edges are A-

u v w1 x1

x∆w1

...

. . .
...

w∆v

(a) Reachability propagation.

1start 2

ā a

a

(b) The finite state machine.

Figure 5. Propagating reachability information along out-
going edges of node v according to a regular language ā∗a∗.
In the left figure, dashed arrows denote summary edges and
solid arrows A- or Ā-edges. The notation ∆u denotes the
out-degree of node u.

(a) Phase one

(b) Phase two

x . . . u v . . . y

y′

M

D1

d

x . . . u v . . . y

x′ y′

D1

M

d d

Figure 6. Two-phase propagation for an M-edge (u,M, v).

and Ā-edges, which are the original edges of the input PEG.
We give a concrete example below to demonstrate reachabil-
ity propagation.

Example 2. Consider a summary edge (u, X1, v) in Fig-
ure 5(a), where X1 corresponds to state 1 in Figure 5(b). We
traverse outgoing Ā-edges of v. Using an Ā-edge (v, ā,w1),
we generate the new summary edge (u, X1,w1). Then we
continue traversing outgoing edges of w1. Similarly, with an
A-edge (w1, a, x1), we generate (u, X2, x1). The new X2-edge
corresponds to state 2 representing the fact that reachabil-
ity propagation is consistent with the state transitions in
Figure 5(b).

Then we take memory aliases (M) into consideration.
Therefore, value aliases now concern all PEG edges. It is clear
from rule (ZR1) in Figure 2 that each M-path is generated
from a V-path. For value aliases described by rule (ZR2), we
can infer that each V-path is generated by a path p whose
R(p) = ā∗a∗, injected with zero or more M-paths.

The basic idea of our algorithm is to initialize a worklist
that contains all reflexive M-paths (u,M, u), and use these
M-paths to initialize the generation of new V-paths. The
reachability propagation procedure is similar to the example
in Figure 5. Specifically, for each M-path (u,M, v) popped
from the worklist, we first propagate reachability information
along the outgoing edges of v until a D-edge (y, d, y′) is
encountered, depicted in Figure 6(a). We define the resulting
summary edge (u,D1, y′) as a pivot edge. With this pivot

M F DV d

DV F d̄ V

V F MAM AMs

MAM F MAs Mq

Mq F ε

Mq F M

MAs F ε

MAs F MAs MA

MA F Mq ā

AMs F ε

AMs F AMs AM

AM F a Mq

Figure 7. The normal form of the CFG in Figure 2. It is
used by the CFL-reachability algorithms in our paper. The
subscripts q and s denote the question (?) and star (∗) in
standard EBNF notation, respectively.

(c,M, c)

(c,Mq, c)(&b,AM, c)(&b,AMs, &b)(&b,Mq, &b)(&b,MAs, &b)

(&b,AMs, c)(&b,MAM, &b)

(&b,V, c)

(b,M, *c)

(b,DV , c)

(&b, a, c)

(b, d̄, &b)

(c, d, *c)

Figure 8. Computing M-edge (b,M, *c) according to an
existing M-edge (c,M, c) in Figure 4(b). The solid edge
denotes propagating w.r.t. a grammar rule from Figure 7.
The arrow edge denotes propagating using an existing PEG
edge.

edge, we continue propagating reachability information along
the outgoing edges of u until a matched D̄-edge (x′, d̄, x) is
encountered, depicted in Figure 6(b). The newly generated M-
path (x′,M, y′) is then inserted to the worklist, which is used
to generate other V-paths. We name this procedure two-phase
propagation.

The key benefit of our approach is that for each summary
edge (u, X, v) popped from the worklist, our algorithm propa-
gates reachability information along only the original PEG
edges (i.e.,A-, Ā-,D- and D̄-edges) and existing M-edges in
the current graph. In contrast, the traditional CFL-reachability
algorithm considers all summary edges in the current graph
w.r.t. the given CFG. Consequently, it computes more in-
termediate summary edges and takes more steps to obtain
the V- and M-edges. Next, we give a concrete example to
demonstrate this important benefit of our algorithm.

1 . . . 2 . . . 3 . . . 4 . . . 5
ā ā ā ā a a a a

Figure 9. The representative positions of M in V .

Positions Outgoing Paths p
Left R(p) Right R(p)

1 d ā∗a∗d
2 a∗d ā∗a∗d
3 a∗d a∗d
4 ā∗a∗d a∗d
5 ā∗a∗d d

Table 1. Realized strings of outgoing paths from an M-edge
(u,M, v) according to positions in Figure 9. The outgoing
paths of node u realize left strings. Similarly, the outgoing
paths of node v realize right strings. Note that we have omitted
M-edges in this table.

Example 3. Consider an M-edge (c,M, c) in Figure 4(b). We
describe the main steps to compute a new M-edge (b,M, *c)
using both the traditional CFL-reachability algorithm and
ours.

The traditional CFL-reachability algorithm takes 11 steps
to compute the new summary edge, as shown in Figure 8. In
each step, it refers to the given CFG in Figure 7 to compute
intermediate summary edges. Specifically, it computes reflex-
ive edges such as (&b,MAs, &b) w.r.t. the ε-rules in Figure 7.
Moreover, it computes new intermediate summary edges such
as (&b,MAM, &b) based on existing edges (&b,MAs, &b) and
(&b,Mq, &b) w.r.t. the rule “MAM F MAs Mq”. The pro-
cedure is similar to CFL parsing, i.e., Figure 8 describes
a partial parsing tree of the string “d̄ad̄dd”, which corre-
sponds to the path p = b, &b, c, &c, c, *c in the PEG.

Our two-phase propagation approach only takes three

steps. Specifically, it takes one step (i.e., (c,M, c)
(c,d,*c)
−−−−−→

(c,D′1, *c)) in phase one propagation. In phase two propaga-

tion, it takes two additional steps, namely, (c,D′1, *c)
(c,ā,&b)
−−−−−→

(&b,D1, *c)
(&b,d,b)
−−−−−→ (b,M, *c). The details of our two-phase

propagation are given in the subsequent sections. We can see
from this example that our algorithm takes fewer steps and
computes fewer intermediate summary edges.

3.2 Propagating CFL-Reachability Information
There are two challenges in our two-phase propagation
scheme: (1) to determine a proper propagation direction
to find the pivot D′1-edge, and (2) to handle M-edges cor-
rectly during propagation. We address both challenges in
Sections 3.2.1 and 3.2.2, respectively. Section 3.2.3 gives the
detailed description of our two-phase propagation.

3.2.1 Propagation Directions
Our algorithm generates new V-paths based on existing M-
paths. Consider an M-path popped from the worklist, we need

to identify its representative position in a V-path in order to
initialize the two-phase propagation. When discussing propa-
gation directions, we omit M-edges encountered during the
two-phase propagation. We say a V-path is nontrivial if its
derivation rule (ZR2) contains at least one a or ā. Figure 9
shows a nontrivial V-path along with five representative po-
sitions for M-paths. Specifically, positions 1 and 5 describe
two endpoints of the V-path. According to rule (ZR1), reach-
ability information can be propagated through a D̄-edge and
aD-edge at the endpoints. Positions 2 and 4 indicate that the
M-paths can exist anywhere on the ā∗- and a∗-paths, respec-
tively. Finally, position 3 represents the unique position that
is between the ā∗- and a∗-paths.

Table 1 summarizes all possible outgoing paths of an M-
edge with their realized strings. Take position 4 in Figure 9
for example. The outgoing paths along the reversed edges
from position 4 to position 1 realize “ā∗a∗”. Together with the
last outgoingD-edge, the left realized string of position 4 in
Table 1 is “ā∗a∗d”. From the table, we can see that positions
1 and 5 are symmetric according to their left and right
realized strings. Similarly, positions 2 and 4 are symmetric,
too. Moreover, M-paths are also symmetric as discussed in
Section 2.3. Therefore, for all M-edges (u,M, v) in positions
1 and 2, we can always use their symmetric edge (v,M, u) to
propagate reachability information as if they were in positions
4 and 5. When the M-edges (u,M, v) are in positions 3, 4 and
5, the reachability information can always be propagated via
outgoing A- and D-edges of node v, i.e., through the right
outgoing paths in Table 1. The propagation continues until
it reaches the endpoint y with aD-edge (y, d, y′), depicted in
Figure 6. We then obtain the pivot D′1-path (u,D1, y′) for the
phase two propagation. To sum up, for each M-edge (u,M, v),
we can use outgoing A- and D-edges of nodes u and v to
initialize our two-phase propagation, without considering
outgoing M-edges.

3.2.2 Properties of M-paths
We then discuss how to handle M-edges encountered dur-
ing the two-phase propagation. Our alias analysis algorithm
fully utilizes the properties of M-paths. For instance, in pre-
vious sections, we make use of their reflexivity to initial-
ize the worklist and their symmetry to start the two-phase
propagation. This section further discusses its nonconsec-
utive property. We say a path p′ = u′, . . . , v′ is a subpath
of path p = u, . . . , v iff both u′ and v′ are in p such that
p = u, . . . , u′, . . . , v′, . . . , v. Moreover, if the subpath p′ is
an X-path, we say it is an X-subpath. Formally, we have the
following lemma:

Lemma 1. For any V-path in the PEG, the M-subpaths are
always nonconsecutive.

Proof. All V-paths are generated w.r.t. the CFG in Figure 2.
According to rule (ZR1), M-subpaths that belong to different
V-paths are always separated by at least one D̄- orD-edge.
To prove the nonconsecutive property in rule (ZR2), we use

Input (α) a d M
State (Yα)

M V1 D′1 ×

V1 V1 D′1 V ′1
V′1 V1 D′1 ×

Mstart

D′1

V1 V ′1

a

a

M

a

d d
d

Figure 10. Phase one propagation.

case analysis. Since there are three unique Ms in this rule,
we denote the whole rule as “(M1? ā)∗ M2? (a M3?)∗”. This
leads to three cases:

• M1 and M{1,2,3}: There is an “ā” that immediately follows
M1. Therefore, each Mk that follows M1 is separated by
at least one “ā”, where k ∈ {1, 2, 3}.
• M2 and M{2,3}: The question mark represents zero or one

occurrence. As a result, M2 cannot follow itself. Every
M3 is preceded by an “a”, therefore, there exists at least
one “a” between M2 and M3.
• M3 and M3: Due to the preceded “a”, this case is similar

to the case above. �

According to Section 3.2.1, for each M-path (u,M, v), we
use the outgoing edges of nodes u and v to initialize phase one
propagation. Due to the nonconsecutive property (Lemma 1),
we cannot use outgoing M-edges. Thus, we have:

Lemma 2. For each edge (u,M, v), it suffices to consider the
outgoingA- andD-edges of u or v to initiate the first phase
propagation.

During the two-phase propagation, our algorithm handles
the nonconsecutive property of M-paths by marking any in-
termediate X-path as an X′-path when an M-path is encoun-
tered. An X′-path cannot further make use of any additional
M-paths to propagate reachability information. Specifically,
in the phase one propagation shown in Figure 6(a), we propa-
gate reachability information along outgoing edges of node
v. Therefore, an X′-path (u, X′,w) can only use outgoingA-
and D-edges of w. Similarly, in the phase two propagation
shown in Figure 6(b), an X′-path (w, X′, y′) cannot use outgo-
ing M-paths of w. Moreover, an X′-path transits back to an
X-path when encountering anA- or Ā-edge.

3.2.3 Two-Phase Propagation
We now give the details of the two-phase propagation used in
our alias analysis algorithm.

Phase One Propagation. In this phase, we propagate reach-
ability information as depicted in Figure 6(a). The right outgo-
ing R(p) of positions 3, 4 and 5 in Table 1 is “a∗d”. Therefore,
we use the finite state machine in Figure 10 to handle all pos-
sible encountered outgoing edges. Specifically, in the three
positions, node v of an M-edge (u,M, v) may encounter ar-
bitrary outgoingA-edges during propagation. We represent
it as state V1. Moreover, if state V1 encounters an outgoing

Input (α) a ā d M
State (Yα)

D′1 D2 D1 M ×

D1 D2 D1 M D′1
D′2 D2 × M ×

D2 D2 × M D′2

D′1start

M

D1

D′2

D2

a

aā

d

d

d

d

a

āM aM

Figure 11. Phase two propagation.

M-edge, it handles the nonconsecutive property and transits
to state V ′1. Finally, when the rightmost D-edge is encoun-
tered, states M, V1 and V ′1 transit to D′1 and the phase two
propagation begins.

Phase Two Propagation. In this phase, we propagate reach-
ability information w.r.t. the pivot D′1-edge (u,D′1, y

′) de-
picted in Figure 6(b). We describe the corresponding finite
state machine in Figure 11. Specifically, according to posi-
tions 3, 4 and 5 in Table 1, the possible outgoing paths of
node u realize the string “ā∗a∗d”. Therefore, we need two
states D1 and D2, which is similar to the example in Figure 5.
As before, two additional states D′1 and D′2 are required to
handle the nonconsecutive property. Finally, when the left-
mostD-edge is encountered, a new M-edge is generated and
the two-phase propagation terminates.

Each M-path in PEG is generated by prepending a D̄-edge
and appending a D-edge to an existing V-path. We use an
M-subpath of a V-path to trigger the two-phase propagation
and compute reachability summaries according to the finite
state machines in Figures 10 and 11, respectively. Therefore,
we have the following correctness lemma:

Lemma 3. The two-phase propagation correctly computes
new M-edges based on existing M-edges.

3.3 Alias Analysis Algorithms
This section introduces the two core algorithms for our all-
pairs alias analysis: memory alias (Section 3.3.1) and value
alias (Section 3.3.2), respectively.

3.3.1 Memory Alias Algorithm
The main algorithm for computing all-pairs memory aliases
is given in Algorithm 1. It is a worklist-based algorithm that
follows the traditional dynamic programming scheme for
solving all-pairs CFL-reachability. The algorithm takes a
PEG as input, and proceeds in two major steps:

• Initialization. The worklist W is initialized on lines 1-3.
All non-address-taken nodes are considered. Specifically,
every non-address-taken node u has an incomingD-edge
(u, d, v). Therefore, the realized path R(p) for p = u, v, u
is “d̄d”, which describes a reflexive memory alias relation
(u,M, u). The resulting M-edge is inserted into the graph.

u v w

Yα

X α
w u v

Yα

Xα

(a). Phase one. (b) Phase two.

Figure 12. Adding summary edges in two phases.

Note that the reflexivity of M plays an important role in
our correctness analysis.
• Reachability information propagation. When a summary

edge (u, X, v) is popped from the worklist, the reachability
information is propagated using the two-phase propaga-
tion. Specifically, we use the find-transition procedure to
look for the relevant transitions in the corresponding phase.
For example, in the phase one propagation on lines 7-14,
for each outgoing neighbor w of v connected via edge
(v, α,w), the find-transition procedure returns state Yα
according to the transition table in Figure 10. The sum-
mary edge (u,Yα,w) is then inserted to the PEG depicted
in Figure 12. The phase two propagation on lines 16-23 is
handled similarly.

The algorithm terminates when the worklist W becomes
empty. All summary edges describing memory aliases are
presented in the final PEG.

Theorem 1. Algorithm 1 correctly computes all M-paths in
the given PEG.

Proof. Algorithm 1 handles all reflexive M-paths on lines 2-
3. Therefore, we consider only non-reflexive M-paths. We
use proof by contradiction. Suppose the claim is false; that is,
there exists at least one non-reflexive M-path that Algorithm 1
does not compute. Let the path be p = u, u1, . . . , v1, v, where
L(u, u1) = d̄, L(v1, v) = d and path p1 = u1, . . . , v1 is
a V-subpath. Since the concerned M-path is non-reflexive,
the length of the V-path must be greater than 1. According
to Lemma 3, the corresponding V-path should have no M-
subpaths, i.e., the V-path can only be “ā∗a∗”. Note that M-
paths are reflexive for all non-address-taken variables due
to Section 2.3. Therefore, all PEG nodes w1 in the path p1
represent address-taken variables, which contradicts the fact
that one cannot assign an address-taken variable to another
address-taken variable in C language. And this completes the
proof. �

3.3.2 Value Alias Algorithm
The memory alias algorithm does not compute V-paths for
top-level variables, because these variables do not have out-
goingD-edges to obtain the pivot D′1-edge. The basic idea of
our value alias algorithm is to compute V-reachability based
on existing phase one summary edges, without resorting to
the pivot edge. A naı̈ve approach to compute all V-paths is
to reuse the existing A-, Ā- and M-edges and perform an
additional two-phase propagation. According to rule (ZR2),

Algorithm 1: Computing memory aliases.
Input :PEG G = (V, E);
Output : the set of summary edges

1 foreach v ∈ V do
2 if v has incomingD-edges then
3 insert (v,M, v) to G and to W

4 while W , ∅ do
5 (u, X, v)← Select-From(W)

6 /* Phase 1 propagation. */

7 if X = M or X = V1 or X = V ′1 then
8 foreach α ∈ {a, d,M} do
9 Yα ← Find-Transition(X, α)

10 if Yα == × then continue
11 foreach w ∈ Out(v, α) do
12 if (u,Yα,w) < G then
13 insert (u,Yα,w) to G and to W
14 if Yα == M then insert (w,Yα, u) to

G and to W

15 /* Phase 2 propagation. */

16 if X = D1 or X = D′1 or X = D2 or X = D′2 then
17 foreach α ∈ {a, ā, d,M} do
18 Yα ← Find-Transition(X, α)
19 if Yα == × then continue
20 foreach w ∈ Out(u, α) do
21 if (w,Yα, v) < G then
22 insert (w,Yα, v) to G and to W
23 if Yα == M then insert (v,Yα,w) to

G and to W

the correctness is immediate. Unlike the naı̈ve approach, we
reuse the existing V1 and V ′1-edges instead, and reformulate
it as an Υ-reachability problem. Algorithm 2 gives our value
alias algorithm. We consider it the main new algorithm of
this paper and discuss the correctness as follows.

Any trivial V-path is an M-path which has been correctly
computed by Algorithm 1. Therefore, we focus on nontrivial
V-paths. We structure the proof into two parts. In the first part,
we show that the all-pairs nontrivial V-reachability on PEGs
can be expressed as all-pairs Υ-reachability. Then, we show
that our value alias algorithm correctly solves the all-pairs
Υ-reachability problem.

Let us consider rule (ZR2) from Figure 2 that describes
nontrivial V-paths. Due to the bidirectedness of PEG, it
suffices to consider a nontrivial V-path with at least an A-
edge. Rule (ZR2) can be rewritten as follows:

V F (M? ā)∗ M? a M? (a M?)∗

Algorithm 2: Computing value aliases.
Input :PEG G = (V, E) with pre-computed M-edges;
Output : the set of summary edges

1 Initialize worklist Wv to be empty
2 Compute the transitive closure of existing V1-paths
3 Compute all V1

′-paths using M- and V1-paths
4 foreachA-edge (u, a, v) do
5 foreach α ∈ {V1,V ′1,M} do
6 foreach w ∈ Out(v, α) do
7 if (u,V2,w) < G then
8 insert (u,V2,w) to G and to Wv

9 foreach (u,V2, v) ∈ Wv do
10 foreach α ∈ {V1,V ′1,M,V2} do
11 foreach w ∈ Out(u, α) do
12 if (w,V2, v) < G then
13 insert (w,V2, v) to G

We introduce two additional rules: Γ F M? (a M?)∗ and
Γ̄ F (M? ā)∗ M?. Thus, the above rule becomes:

V F Γ̄ a Γ (A1)

According to the bidirectedness of PEGs and the symmetry
of M-edges, it is immediate that Γ̄ is the inverse of Γ.
Therefore, it suffices to consider only Γ-paths in the PEGs.
Namely, given a PEG G = (V, E), we have (v, Γ, u) ∈ E for all
(u, Γ̄, v) ∈ E . We also give a new definition of the reachability
considered in the proof.

Definition 2 (Υ-reachability). A PEG node v is Υ-reachable
from u iff there exists an A-edge (x, a, y) such that u is Γ-
reachable from x and v is Γ-reachable from y, respectively.

According to rule (A1), the following lemma is immediate.

Lemma 4. The all-pairs nontrivial V-reachability on PEGs is
equivalent to the all-pairs Υ-reachability.

We next discuss the proprieties of Υ-reachability. Non-
terminal Γ represents a regular expression. Since regular ex-
pression is a Kleene algebra, we use two theorems of Kleene
algebra [10] to simplify the regular expressions discussed in
our proof. Kleene algebras are algebraic structures with oper-
ators +, ·, ∗, 0, and 1, with certain properties.1 In particular,
we use the denesting rule and the shifting rule [23, p. 57]
described below:

(a∗b)∗a∗ = (a | b)∗ (R1)
a(ba)∗ = (ab)∗a (R2)

1 In regular expressions, operator “+” represents as “|”, and “·” is usually
omitted.

M V1

a | M a

a
M V ′1

a a∗M

a a∗M

(a). State V ′1 eliminated. (b) State V1 eliminated.

Figure 13. State elimination of Figure 10. Note that there is
no need to consider state D′1.

Therefore, we have the following:

Γ = M? (a M?)∗ R2
= (M? a)∗M?

For an arbitrary PEG node, all nonempty outgoing Γ-paths
can be classified into three categories:

• Γ0-paths: trivial Γ-paths where Γ0 = M;
• Γ1-paths: nontrivial Γ-paths where Γ1 = M a (M? a)∗M?;
• Γ2-paths: nontrivial Γ-paths where Γ2 = a (M? a)∗M?.

The following two lemmas summarize two properties of
the Γ-paths.

Lemma 5. All Γ2-paths in PEGs can be obtained by prepend-
ing anA-path to existing Γ0- or Γ1-paths.

Proof. According to the definition, all Γ2-paths can be classi-
fied into four categories:

(1) Γ2 = a;
(2) Γ2 = a M;
(3) Γ2 = a M a (M? a)∗M?;
(4) Γ2 = a a (M? a)∗M?.

It is clear that the “Γ2”s in categories (2) and (3) are derived
by prepending an “a” to Γ0 and Γ1, respectively. Moreover, for
eachA-edge (u, a, v), node v always represents a non-address-
taken variable with the reflexive M-edge (v,M, v). Therefore,
the Γ2-paths (u, Γ2, v) in category (1) can always be generated
using existing (u, a, v) and (v,Γ0, v). Similarly, due to the
reflexive M-edge (v,M, v), there always exists a Γ1-edge
(v,Γ1,w) for each (v,Γ2(4),w), where Γ2(4) = a (M? a)∗M?.
Therefore, it is similar to category (3). �

Lemma 6. For any PEG node u that represents a non-address-
taken variable, there always exists a Γ1-path (u,Γ1, v) for
each Γ2-path (u,Γ2, v).

Proof. There exists a reflexive M-path (u,M, u) for each PEG
node u that represents a non-address-taken variable. As a
result, for each Γ2-path (u,Γ2, v), we always have a Γ1-path
u, u, . . . , v with (u,M, u) and (u,Γ2, v). �

Next, we discuss how Algorithm 2 solves all-pairs Υ-
reachability. On lines 2 and 3, Algorithm 2 handles V1- and
V ′1-paths. According to Figure 10, we describe the regular ex-
pressions that V1 and V ′1 represent, respectively. Specifically,
we apply the standard “state elimination” method [19] to the

finite state machine and simplify the resulting expressions.
The intermediate finite state machines with accepting states
V1 and V ′1 are given in Figure 13. We also give the full steps
as follows:

V1 = M a (a | M a)∗

= M a (M? a)∗

V ′1 = M a a∗M (a a∗M)∗

R2
= M a (a∗M a)∗a∗M R1

= M a (a | M a)∗M

= M a (M? a)∗M

From the simplified expressions, it is clear that Γ1 F V1 |

V ′1 and V ′1 F V1 M. Note that relation V1 is transitive.
According to the state transitions in Figure 10, for any two
V1-paths p1 = (u1,M, v1)(v1, a,w1) . . . (y1, a, z1) and p2 =

(z1,M, v2)(v2, a,w2) . . . (y2, a, z2), the path that concatenates
p1 and p2 is always a V1-path. Algorithm 2 obtains all V1-
paths by computing the transitive closure (line 2). However,
relation V ′1 is not transitive due to Lemma 1. According to
the above simplified expressions, we obtain all V ′1-paths by
appending an M-edge to existing V1-paths (line 3). Therefore,
it computes all Γ1-paths. On the other hand, the Γ0-paths (i.e.,
M-paths) have already been obtained by the memory alias
algorithm. The following lemma summarizes the discussion.

Lemma 7. Algorithm 2 correctly computes all Γ0- and Γ1-
paths for each PEG node.

Algorithm 2 considers allA-paths on line 4. For anyA-
path (x, a, y), Algorithm 2 traverses all outgoing Γ0- and Γ1-
paths on lines 5-8. Therefore, it finds all Γ2-paths in the PEG
due to Lemma 5. According to the A-edge, node y must
represent a non-address-taken variable. Therefore, due to
Lemma 6, it suffices to use only outgoing Γ0- and Γ1-paths of
y as all outgoing Γ-paths. Combining the above discussion,
we have the following lemma.

Lemma 8. Given an A-edge (x, a, y), Algorithm 2 correctly
computes all Γ2-paths for each PEG node. Moreover, it finds
all nodes v that are Γ-reachable from y.

Algorithm 2 stores all Γ-reachable nodes v from x using
outgoing V2-paths (x,V2, v). Therefore, the M-, {V1,V ′1}- and
V2-paths in the PEG necessarily and sufficiently represent all
Γ0-, Γ1- and Γ2-paths. On lines 10-13, Algorithm 2 traverses
all nodes u that are Γ-reachable from x. Finally, Algorithm 2
pairs nodes u and v by inserting a summary edge (u,V2, v),
i.e., it correctly solves the all-pairs Υ-reachability given in
Definition 2. Any Υ-reachability query concerned with PEG
nodes u and v can be answered by testing whether there exists
a V2-path between nodes u and v. Combining Lemma 4, we
obtain the following theorem.

Theorem 2. Algorithm 2 correctly computes all V-paths in
the given PEG.

Complexity Analysis. We conduct the complexity analysis
for Algorithms 1 and 2. The worst-case complexity of Al-
gorithm 1 is O((m + M)n), where M denotes the number of
M-edges, and n and m denote the numbers of nodes and edges
in the original graph, respectively. For each summary edge
(u, X, v), Algorithm 1 traverses its neighbors connected via
A-edges, D-edges and M-edges. Let k and ∆v denote the
grammar size and the degree of node v concerning these three
kinds of edges, respectively. From Figures 10 and 11, we have
k = 7 since there are seven kinds of summary edges. The total
number of steps required are 7 · Σ(u,v)∆v = 7 · Σu(Σv∆v). For
the value alias algorithm in Algorithm 2, the running time
is dominated by lines 9-13. There can be O(n2) V2-edges in
the worst case. For each V2-edge, the foreach loop on line 11
takes O(n) time. Therefore, the worst-case time complexity
for the whole alias analysis algorithm is O(n3).

Connected Component Decomposition. The worst-case
time complexity depends on the number n of nodes in the
PEG. Our connected component (CC) decomposition tech-
nique reduces n by decomposing the original PEG into con-
nected components. Since the nodes in two connected com-
ponents are unreachable, computing the reachability on those
smaller components yields the same results as computing
on the original PEG. The CC decomposition can be done
using a simple linear-time depth-first search on the PEG. We
further investigate this optimization’s practical benefits in the
evaluation section.

3.4 Saving a Logarithmic Factor
The Four Russians’ trick [4] is known as a popular technique
for speeding up set operations under the random access ma-
chine model with uniform cost criterion. The original paper
proposed an O(log d)(n3/log n) algorithm for finding the tran-
sitive closure of a directed graph with n nodes and diameter
d. The technique has been applied in various contexts. Ex-
amples include shortest path problems [7], Boolean matrix
multiplication [1, Ch. 6], and k-clique problems [45], to name
just a few.

In particular, this technique has also been adopted for fast
recognition of context-free languages [36] as well as reach-
ability problems in recursive state machines [8], resulting
in a logarithmic speedup. We can apply this technique to
Algorithm 1 directly. We first recall some preliminaries. We
begin by assuming the RAM model has word length θ(log n)
and constant-time bitwise operations on words. Let U denote
a universe of n elements. A subset of U can be represented
as a bit vector (a.k.a. characteristic vector) of length n by
representing each element as a single bit. The characteristic
vector is then stored in O(dn/log ne) words each with θ(log n)
bits. Following the work of Chaudhuri [8], we refer to the re-
sulting data structure as fast set, which permits the following
two operations:

• insert(X, i): insert an element i into fast set X.

• diff(X, Y): compute the set difference between fast sets X
and Y and return a list of all the resulting elements.

Lemma 9. Given fast sets X,Y ⊆ {1, . . . , n}, and i ∈ {1, . . . , n},

(i) insert (X, i) takes O(1) time;
(ii) diff (X, Y) takes O(dn/log ne + v) time, where v is the
number of elements in the result set.

Proof. Claim (i) is obvious by determining the position of
i in relevant word of X and then performing the bitwise or
operation. Claim (ii) follows in two steps. First, we perform
the bitwise operations on the words comprising X and Y ,
resulting in Z = X \ Y . This takes O(dn/log ne) time under
the assumed RAM model. Then, we list all elements in Z
by repeatedly finding and turning off the most significant bit,
which takes time O(v), where v is the number of elements.
If this operations are not directly supported, we can pre-
compute the answers to all words (or pairs of words) with
O(n) pre-processing time and subsequently perform table
lookups. �

In our algorithm, we can represent the In and Out sets
using fast sets. Therefore, lines 11-12 in Algorithm 1

foreach w ∈ Out(v, α) do
if (u,Yα,w) < G then

can be changed using the fast-sets operations as

foreach w ∈ diff (Out(v, α),Out(u,Yα)) do.

Similarly, lines 20-21 can be changed to

foreach w ∈ diff (Out(u, α), In(v,Yα)) do.

The new algorithm takes O(n/log n) time to traverse the three
kinds of edges for each node n. This technique can also
be applied to the value alias algorithm in Algorithm 2. As
a result, the total time complexity is O(n(n · n/log n)) =

O(n3/log n).

4. Evaluation
To evaluate the effectiveness, we apply our subcubic alias
analysis on some recent stable releases of widely-used C pro-
grams in the pointer analysis literature. Moreover, we evaluate
three algorithms solving all-pairs CFL-reachability on PEGs:
The traditional cubic CFL-reachability algorithm [34, 51],
Chaudhuri’s subcubic algorithm [8] and our proposed al-
gorithm. The results demonstrate that our alias analysis al-
gorithm that solves all-pairs CFL-reachability performs ex-
tremely well in practice. For instance, it can analyze the Linux
kernel in about 30 seconds.

4.1 Experimental Setup
Benchmark Selection. The set of C programs used in
our evaluation is described in Table 2. For each program,
we list its number of source lines of code (SLOC), its
number of procedures, the size of its Program Expression
Graphs (PEGs), and the number of temporaries introduced in

Program SLOC #Procs PEG #Temps# Nodes # Edges
Gdb-7.5.1 1,828K 10,536 649,564 1,219,788 6,472
Emacs-24.2 254K 3,626 687,691 1,290,200 2,424
Insight-6.8-1a 1,742K 10,507 787,289 1,494,168 7,898
Gimp-2.8.4 702K 17,842 872,681 1,675,546 13,876
Ghostscript-9.07 851K 12,211 1,198,753 2,368,086 6,806
Wine-1.5.25 2,306K 70,923 4,652,983 8,472,950 25,064
Linux-3.8.2 10,601K 138,095 12,807,645 23,398,670 69,840

Table 2. Benchmark applications. The SLOC is reported by sloccount counting only C code.

the traditional inclusion-based pointer analysis. The subject
programs were obtained from the official websites. Gdb is the
GNU debugger; Emacs is a text editor; Insight is a GUI for
Gdb; Gimp is an image processing application; Ghostscript
is a PostScript interpreter and PDF generator; Wine is a
Windows emulator; and Linux is the kernel of the Linux
operating system.

PEG Generation. All C programs used in our evaluation
are processed by Gcc-4.8.1. We then apply the tool described
in the wave propagation work [27] to generate constraint files
for traditional inclusion-based pointer analysis. Specifically,
the tool dumps intermediate constraints for each source
file based on Gcc’s whole program analysis result. The
intermediate constraints contain call graph information (with
resolved function pointers) for interprocedural analysis in
our work. We finally develop a Perl script to generate a
global PEG from the intermediate constraints. In particular,
the temporaries introduced in transforming the source code
to the four standard forms are eliminated, represented as the
“#Temp” column in Table 2. We observe that the number of
temporaries is relatively small compared to the number of
pointer variables (i.e., “#Nodes” in the PEGs).

Implementation. Both our analysis algorithm and the tradi-
tional CFL-reachability algorithms are implemented in C++

with extensive use of the Standard Template Library (STL).
The Four Russians’ Trick used in Chaudhuri’s subcubic CFL-
reachability algorithms is implemented with a combination of
Gcc’s own built-in functions operating on bitvectors. Those
built-in functions are each translated to a single CPU instruc-
tion. For example, the bit scan reverse (bsr) instruction can
locate the first set bit, clear the bit and return its position in
one CPU instruction, which can be considered as constant
time. For more bitwise tricks, we refer the reader to Warren’s
book [46] and Andersen’s bit twiddling hacks page.2

All of the executables are compiled with Gcc-4.8.1 with
“-O2” optimization. The algorithms take the same PEGs as
input. Their outputs are verified to ensure consistency and
correctness. Note that our algorithm computes the memory
aliases (i.e., the M-edges) and value aliases (i.e., the V-
edges) in two phases. All experiments were conducted on

2 http://graphics.stanford.edu/˜seander/bithacks.html

a machine with Intel Xeon E5520 CPU and 32GB RAM,
running Ubuntu-13.10.

4.2 Performance of Alias Analysis Algorithms
We present the first performance report of subcubic alias
analysis. We use the normal forms in Figure 7 for both
cubic and Chaudhuri’s subcubic CFL-reachability algorithms.
Note that our algorithm based on the two-phase propagation
does not require such normal forms. We then compare the
time and memory consumption among traditional cubic
CFL-reachability algorithm, Chaudhuri’s subcubic algorithm
and our proposed algorithm. We also evaluate the practical
benefits of applying CC decomposition in CFL-reachability-
based alias analysis.

4.2.1 Time Consumption
Table 3 shows the time and memory consumption of the three
evaluated algorithms computing all-pairs CFL-reachability.
The time and memory consumption data is collected differ-
ently. Specifically, the running time columns in Table 3 report
the accumulated running time on all PEGs. On the other
hand, the memory consumption columns in Table 3 report the
maximum memory consumed in the project, since the used
memory can be freed before processing next PEG. More-
over, our algorithm computes CFL-reachability in two stages
(discussed in Section 4.4.1). The M column of our approach
indicates the running time of computing only memory aliases,
while the “M + V” column represents the running time of
computing both memory and value aliases.

From the running time columns, we can see that the
traditional cubic all-pairs CFL-reachability algorithm does
not scale well. For example, the cubic algorithm takes about
15 minutes to complete on Gimp, which is already the best
running time result of all programs used in our study. This
result explains why there has been no practical all-pairs
CFL-reachability-based pointer analysis for C. We note that
Chaudhuri’s subcubic algorithm brings tremendous speedup
in practice. Specifically, Chaudhuri’s subcubic algorithm
using the Four Russians’ Trick is more than 262.5 times
faster than the cubic algorithm on average. The Linux kernel
project takes Chaudhuri’s subcubic algorithm the longest
time to analyze. However, it is still within three minutes,

Program
Time Memory

Cubic Subcubic Our Cubic Subcubic Our
M V + M M V + M

Gdb-7.5.1 3721.12 12.00 1.76 3.34 150.40 103.43 44.35 51.48
Emacs-24.2 96270.20 140.50 29.38 56.10 1095.00 1911.17 540.47 619.15
Insight-6.8-1a 990.40 9.57 0.78 1.50 116.19 150.59 44.14 50.86
Gimp-2.8.4 885.09 8.98 0.70 1.30 56.85 51.51 18.29 20.47
Ghostscript-9.07 6053.17 31.88 4.55 8.47 256.25 272.54 112.15 128.75
Wine-1.5.25 12748.60 72.99 5.01 9.69 451.50 1450.96 60.36 69.97
Linux-3.8.2 49540.80 179.55 19.76 38.83 236.44 198.95 52.45 81.59

Table 3. The performance of three CFL-reachability-based alias analyses: time in seconds and memory in MB.

which is quite acceptable for such a large project. Note that
it typically takes more than 30 minutes to compile the Linux
kernel (without executing make in parallel) on the machine
used for our experiments.

Among the three evaluated algorithms, our algorithm
achieves the best performance. In particular, our memory
alias algorithm is 9.6 times faster than Chaudhuri’s subcubic
algorithm. Moreover, our whole alias analysis algorithm is
5.0 times faster than Chaudhuri’s subcubic algorithm and is
three orders faster than the cubic CFL-reachability algorithm.

4.2.2 Memory Consumption
The actual memory consumption of the cubic algorithm is
slightly different from the subcubic algorithms. Despite the
memory taken by the iterative computation, most of the
memory is taken by the underlying data structures used
to represent the graphs. Specifically, the cubic algorithm
typically uses an adjacency list to store all nodes in the graphs.
It can be observed from Table 2 that the PEGs are quite
sparse in practice, with m = O(n) where n and m represent
the number of nodes and edges, respectively. As a result, the
space required to store the PEGs in the cubic algorithm is
O(m) = O(n).

On the other hand, the space required to store the PEGs
in subcubic algorithms is O(n2), because each node needs
several fast sets for representing all summary edges in the
graph. In particular, all the terminals and nonterminals should
be considered to initialize the corresponding fast sets. For
instance, the normal forms used in the CFL-reachability
algorithms contain four terminals and nine nonterminals, as
shown in Figure 7. The minimal amount of memory required
to represent the largest PEG in Emacs with 15,690 nodes
are 400 MB. However, only 11.8 MB is required to store the
largest PEG in Gimp with 2,693 nodes. From the memory
columns in Table 3, we can observe that both the cubic and
Chaudhuri’s subcubic CFL-reachability algorithms demand
similar amount of memory for the largest PEG. For Emacs
and Wine, Chaudhuri’s subcubic algorithm consumes 1.7
times and 3.2 times more memory, respectively, since the
two programs have larger PEGs. Our algorithm demands the
least amount of memory. In particular, our algorithm needs

only ten terminals and nonterminals in total. On average, our
subcubic alias algorithm consumes 5.1 times less memory
than Chaudhuri’s subcubic algorithm.

4.3 Understanding the Speedup
4.3.1 Graph Density
In order to understand the performance gain better, we
calculate the graph densities in Table 4. The columns in
Table 4 represent the number of original edges, and the
number of memory and value alias edges, as well as all
summary edges in the final graphs, respectively, for each
program. Note that Chaudhuri’s subcubic algorithm computes
the same results as the traditional cubic CFL-reachability
algorithm. Together with Table 2, we first note that the
number of edges m � n2 for all programs, which indicates
that the alias analysis graphs are unlikely to be dense in
practice. We also observe that our algorithm computes fewer
summary edges in the final graphs. Specifically, the number
of final summary edges in our memory alias algorithm and
whole alias analysis algorithm is 4.2 times and 1.4 times fewer
than traditional CFL-reachability algorithms, respectively.
This gives the evidence that our fast algorithm takes fewer
steps to compute the all-pairs M- and V-reachability.

Moreover, our algorithm computes the memory aliases
based only on original PEG edges and memory alias edges
in the final graphs. The number of memory alias summary
edges are 3.1 times fewer than the number of original edges.
On the other hand, the number of other summary edges is
far greater than the number of original edges. For example,
the V-edges and final edges are, respectively, 14.5 times and
31.7 times more. In practice, our algorithm performs better
than Chaudhuri’s subcubic CFL-reachability algorithm based
on the two facts that it propagates reachability along fewer
edges and computes fewer summary edges in total.

4.3.2 Impact of CC Decomposition
The scalability of the subcubic algorithms depends on the
size of the input graph, as observed in Zhang et al.’s recent
work [52]. For instance, an 8GB RAM machine can only
afford to store a PEG with at most 70,164 nodes. Therefore,

Program #Orig. Edges #V-Edges #M-Edges
#Final Edges

CFL Our
M M + V

Gdb-7.5.1 1,219,788 12,904,372 356,075 29,961,321 8,277,405 21,275,891
Emacs-24.2 1,290,200 49,011,799 758,925 112,772,537 41,055,899 89,282,405
Insight-6.8-1a 1,494,168 12,560,471 432,657 27,573,822 6,283,299 18,826,885
Gimp-2.8.4 1,675,546 16,809,343 518,511 33,151,263 6,602,726 22,448,402
Ghostscript-9.07 2,368,086 35,910,829 705,121 76,022,402 20,435,212 58,528,624
Wine-1.5.25 8,472,950 79,613,731 2,769,135 161,447,212 33,447,747 108,817,695
Linux-3.8.2 23,398,670 234,930,383 6,272,658 482,622,025 102,138,615 324,789,282

Table 4. The graph density information for each algorithm.

Program #CC PEG sizes of CCs
Maximum Average

Gdb-7.5.1 66,154 4,350 9.82
Emacs-24.2 67,608 15,690 10.17
Insight-6.8-1a 75,373 4,350 10.45
Gimp-2.8.4 79,572 2,693 10.97
Ghostscript-9.07 87,768 7,025 13.66
Wine-1.5.25 537,370 5,106 8.66
Linux-3.8.2 1,449,718 4,755 8.83

Table 5. Connected component information on the benchmark programs.

it is infeasible to feed the global PEGs described in Table 2
for alias computation.

The CC decomposition technique can significantly reduce
the size of each PEG. The cost is negligible, since a simple
linear-time DFS through the global PEG is sufficient. Table 5
shows, for each program, the number of its connected com-
ponents, and the maximum and average sizes of its PEGs
across the connected components. As expected, each CC typ-
ically has fewer than 20 PEG nodes on average, which can
be effectively handled by the subcubic algorithms in practice.
We find that the overall performance of each of the evaluated
algorithms depends on the largest PEGs encountered during
analysis. In our evaluation, Emacs has the largest PEG after
CC decomposition. Therefore, it requires the most memory
in all evaluated algorithms.

4.4 Discussions
Finally, we discuss the main findings in this work.

4.4.1 Staged CFL-Reachability
Perhaps the most interesting finding in our work is that it is
possible to design a staged CFL-reachability algorithm which
is faster than the traditional CFL-reachability algorithm. In
particular, different stages focus on all-pairs reachability for
different summary edges. We show that our memory alias
algorithm is 9.6 times and 1.2 times faster than Chaudhuri’s
subcubic algorithm and our value alias algorithm, respec-
tively. Moreover, our value alias algorithm depends on the
results of memory aliases. In practice, client analyses may

only be interested in some of the summary edges (e.g., M-
edges). For these clients, it is possible to design an efficient
persistence scheme [48] to store the intermediate results to
avoid duplicated computation among different stages.

The CFL-reachability algorithm can also use the summary
edges from different stages to bootstrap each other. For ex-
ample, in our value alias algorithm, we can reuse all V1-, V ′1-
and M-edges obtained from the memory alias algorithm. The
value alias algorithm only needs to perform additional prop-
agation over top-level variables. The key to enable a staged
CFL-reachability algorithm is to exploit the dependencies
between the relevant nonterminals in the CFG.

An Application to Points-to Analysis. The Zheng and Rug-
ina points-to formulation [54] only concerns memory alias
edges. Therefore, the staged CFL-reachability algorithm is
more efficient than traditional CFL-reachability algorithm
that computes both V- and M-paths.

4.4.2 CFL-Reachability via Partial Summary Edges
In practice, it is possible to design a more efficient CFL-
reachability algorithm using only some of the nonterminal
edges. For example, in our memory alias algorithm, each
worklist item uses only the original PEG edges and M-
edges to propagate reachability information. As shown in
Table 4, the memory edges are quite sparse. Propagating
reachability information through those sparse edges in our
memory alias algorithm yields more than 9.6 times speedup
over Chaudhuri’s subcubic CFL-reachability algorithm.

On the other hand, our fast algorithm depends on the
properties of M-edges on PEGs, which does not intend to
improve the general CFL-reachability algorithm. Specifically,
our algorithm does not compute the all-pairs M- and V-
reachability for arbitrary graphs since an arbitrary graph does
not preserve the reflexivity of M-edges on non-address-taken
nodes. Our algorithm gives the evidence that it is possible
to scale CFL-reachability computation on some specialized
problem instances, without resorting to all summary edges.

4.4.3 Limitations of the Subcubic Algorithm
The Four Russians’ Trick is the key technique to scale
the all-pairs CFL-reachability algorithm. In particular, it
improves the worst-case complexity of the traditional CFL-
reachability algorithm and brings tremendous speedup in
practice. However, the subcubic CFL-reachability algorithms
have two sources of limitations.

The first source of limitation is the size of the input graph.
Theoretically, the subcubic algorithms have quadratic space
complexities. As aforementioned, in practice, an 8GB RAM
machine can only afford to store a graph with at most 70,164
nodes. In order to make the subcubic algorithm scale, we
need to reduce the size of the input graphs. As in our alias
analysis, the input graphs are the PEGs of each CC, which
makes the analysis scalable.

The second source of limitation is the size of the input
grammar. The subcubic algorithm needs to allocate space for
storing the summary edges of all nonterminals and terminals
from the input grammar. Reducing the grammar size may
have practical benefits in saving required memory. It is possi-
ble to exploit properties on the input grammar and represent
the grammar using fewer nonterminals. For example, our
analysis algorithm uses fewer nonterminals than Chaudhuri’s
subcubic algorithm, thus, consumes less memory (Table 3).

5. Related Work
This section surveys the most relevant related work to our
study, namely CFL-reachability, points-to analysis, and alias
analysis.

5.1 CFL-Reachability
The CFL-reachability framework was initially proposed by
Yannakakis for Datalog chain query evaluation [51]. Later,
it has been used to formulate interprocedural dataflow anal-
ysis [34] and many other program analysis problems [12,
22, 28, 30–33, 38, 40, 49]. Both points-to analysis and alias
analysis can be formulated as CFL-reachability problems.

CFL-reachability algorithms have cubic time worst-case
complexity, commonly known as the cubic bottleneck in
flow analysis [16]. As a result, there has been no practical
CFL-reachability-based alias analysis solving all-pairs CFL-
reachability for C. When the underlying CFL is restricted to
the Dyck languages that generate matched pairs of parenthe-
ses, there exists improved algorithms solving the all-pairs

Dyck-CFL-reachability with applications to alias analysis for
Java [52] and polymorphic flow analysis [22] are proposed.
Moreover, Chaudhuri proposed a subcubic algorithm [8].
However, its practical benefits remain unreported. In this
paper, we have presented the design, implementation and
evaluation of the first subcubic CFL-reachability-based alias
analysis.

5.2 Points-to Analysis
Precise pointer analysis is a computationally hard problem.
Any practical pointer analysis should approximate the precise
solution. Compared to equality-based (Steensgaard-style)
analysis [42], inclusion-based (i.e., Andersen-style) points-to
analysis [3] is recognized as the most precise approximation.
A recent paper [5] concludes that “while better algorithms
for the precise flow-insensitive analysis are still of theoretical
interest, their practical impact for C programs is likely to be
negligible.”

Traditional inclusion-based points-to analysis has been
formulated as a dynamic transitive closure problem, with
a cubic time complexity in the worst-case [15, 39]. Over
the last decade, many enhancements have been proposed to
scale the inclusion-based pointer analysis [11, 21, 35], for
instance, cycle elimination [13], projection merging [43],
improved dynamic transitive closure algorithms [15, 17], and
using better data structures for points-to sets [47]. Points-to
analysis is recognized as a natural approach to alias analysis
because aliasing relationship can be decided by consulting
the points-to sets of any pairs of variables [18].

5.3 Alias Analysis
The goal of alias analysis is to decide if two pointer variables
may point to the same memory location during program
execution. The problem is first formulated by Choi et al. [9]
and Landi and Ryder [25]. Most state-of-the-art alias analyses
have been formulated as a CFL-reachability problem on
edge-labeled graphs [38, 40, 49, 50, 54]. Specially, the CFL-
reachability-based analyses do not need a points-to analysis
to obtain the points-to sets first.

Our alias analysis algorithm is based on an existing CFL-
reachability formulation on PEGs, with precision equivalent
to an inclusion-based pointer analysis [54]. The scalability
of CFL-reachability-based analyses has also been an impor-
tant, extensively studied problem. All of the aforementioned
state-of-the-art alias analyses are demand-driven, solving
the single-source-single-sink CFL-reachability problem. Our
alias analysis algorithm solves the all-pairs CFL-reachability
problem and scales to large, real-world applications.

6. Conclusion
In this paper, we have presented a scalable and efficient
subcubic alias analysis for C. We have also presented the
first study that reports the performance of subcubic CFL-
reachability algorithm in practice. To evaluate its scalability,

Statement Constraint Name
p = &q loc(q) ∈ pt(p) [AddrOf]
p = q pt(q) ⊆ pt(p) [Copy]
*p = q ∀a ∈ pt(p).pt(q) ⊆ pt(a) [Store]
p = *q ∀a ∈ pt(q).pt(a) ⊆ pt(p) [Load]

Figure 14. Constraints for flow-insensitive inclusion-based
points-to analysis.

we have conducted extensive experiments on recent stable
releases of the most popular C programs from the pointer
analysis literature. Our results show that our proposed CFL-
reachability-based alias analysis scales extremely well.

Acknowledgments
We would like to thank the anonymous reviewers for helpful
comments on earlier drafts of this paper. The work described
in this paper was supported by RGC GRF grant RGC621912,
the HKUST RFID Center, and United States NSF Grants
1117603, 1319187, and 1349528.

A. Alias Analysis and CFL-Reachability
A.1 Alias Analysis
Given a program, the goal of alias analysis is to determine
which pairs of pointer variables may refer to the same mem-
ory location [20]. The general approach to alias analysis is to
adopt a points-to analysis to compute the set of variables
that a pointer may point to, and then determine whether
their points-to sets intersect [18]. Unfortunately, precise
pointer analysis is well-known as a computationally hard
problem [6, 24, 29]. When discarding the impact of control-
flow dependencies (i.e., flow-sensitivity) and procedure calls
(i.e., context-sensitivity), the precise analysis problem is still
NP-hard [20]. Any practical pointer analysis must approxi-
mate the precise solution.

Inclusion-based (i.e., Andersen-style) points-to analy-
sis [3] is commonly recognized as the most precise flow- and
context-insensitive approximation [5]. It is usually formu-
lated as a dynamic transitive closure problem on constraint
graphs [13, 15, 17]. A simple pass through the input pro-
gram generates four kinds of inclusion constraints shown in
Figure 14. The first constraint concerns the address-taken
variables while the other three manipulate only pointer vari-
ables. Specially, multiple uses of dereferences are replaced
with a sequence of Store and Load statements by introducing
new temporaries. For example, a statement like **p = q is
normalized into *p = temp and *temp = q. For a variable v,
loc(v) represents the memory location denoted by v and pt(v)
represents its points-to set. The points-to analysis problem
is solved by computing the dynamic transitive closure of a
constraint graph, where nodes represent pointer variables and
edges represent inclusions.

A.2 CFL-Reachability
The CFL-reachability problem is to determine whether there
is an S -path from node u to v in G, where S is the start
symbol of the given CFG. In particular, the CFL-reachability
problem has four variants:

(1) The all-pairs S -path problem: For every pair of nodes u
and v, is there an S -path in G from u to v?

(2) The single-source S -path problem: Given a source node
u, for all nodes v, is there an S -path in G from u to v?

(3) The single-target S -path problem: Given a target node v,
for all nodes u, is there an S -path in G from u to v?

(4) The single-source-single-sink problem: Given two nodes
u and v, is there an S -path in G from u to v?

In the literature, there is a popular dynamic programming
algorithm [34, 51] for solving the all-pairs CFL-reachability
problem. It is described in Algorithm 3, where W denotes
a worklist, (u, A, v) denotes the directed edge (u, v) with
label L(u, v) = A, and Out(u, A) denotes the set of all
outgoing A-edges of u, i.e., Out(u, A) = {v | (u, A, v)}. The
main algorithm has two steps: (1) CFG Normalization. The
underlying CFG must be converted to a normal form which
is similar to the Chomsky Normal Form. When the grammar
is in the normal form, all production rules are of the form
A → BC, A → B or A → ε, where A is nonterminal, B and
C are terminals or nonterminals, and ε denotes the empty
string. In this work, we used the normal forms in Figure 7 for
traditional CFL-reachability algorithms; and (2) “Filling in”
New Edges. In order to compute the S -paths, new edges are
added to the graph. For example, lines 11-14 describe that for
the production rule A → BC and edge (i, B, j), all outgoing
edges of node j are considered. If there is an outgoing edge
(j,C, k), a new summary edge (i, A, k) is added to G if it is
not in the current graph. The algorithm terminates if there are
no more new edges to be added.

Pointer analysis can be formulated as a CFL-reachability
problem. In the seminal paper introducing CFL-reachability,
Reps gave a CFL-reachability formulation for the inclusion-
based (i.e., Andersen-style) points-to analysis [32]. Many
state-of-the-art pointer analyses [38, 40, 49, 50, 54] are
formulated using CFL-reachability.

A.3 Complexity Analysis
Both the inclusion-based pointer analysis and CFL-reachability
problems have cubic time complexity in the worst case [15,
32, 39]. The inclusion-based pointer analysis works on a
constraint graph where each node represents a pointer vari-
able and each edge represents set inclusion. In the worst
case, there are O(n2) inclusions in the graph. In essence,
the inclusion-based analysis algorithm computes dynamic
transitive closure, which immediately yields its O(n3) time
complexity.

Algorithm 3: CFL-Reachability Algorithm.
Input :Edge-labeled directed graph G = (V, E);

normalized CFG = (Σ,N, P, S);
Output : the set of summary edges;

1 add E to W ;
2 foreach production A→ ε ∈ P do
3 foreach node v ∈ V do
4 if (v, A, v) < G then
5 insert (v, A, v) to G and to W ;

6 while W , ∅ do
7 (i, B, j)← select-from(W) ;
8 foreach production A→ B ∈ P do
9 if (i, A, j) < G then

10 insert (i, A, j) to G and to W ;

11 foreach production A→ BC ∈ P do
12 foreach k ∈ Out(j,C) do
13 if (i, A, k) < G then
14 insert (i, A, k) to G and to W ;

15 foreach production A→ CB ∈ P do
16 foreach k ∈ In(i,C) do
17 if (k, A, j) < G then
18 insert (k, A, j) to G and to W ;

The situations for CFL-reachability is similar. The running
time of Algorithm 3 is dominated by lines 12 and 16. When
each item is removed from the worklist, it takes time O(n)
to generate new items. In the worst case, there can be O(n2)
items in the worklist. As as result, the overall algorithm takes
time O(n3) in the worst case.

The worst case complexity of both problems is difficult to
improve. Only recently, Chaudhuri shows that the well-known
Four Russians’ Trick [4] can be employed on lines 12-13
and lines 16-17 in the CFL-reachability algorithm to yield a
subcubic algorithm with an O(n3/ log n) time complexity [8].

References
[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and

Analysis of Computer Algorithms. Addison-Wesley, 1974.

[2] R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. W. Reps,
and M. Yannakakis. Analysis of recursive state machines. ACM
Trans. Program. Lang. Syst., 27(4):786–818, 2005.

[3] L. Andersen. Program analysis and specialization for the C
programming language. PhD thesis, University of Cophen-
hagen, 1994.

[4] V. Arlazarov, E. Dinic, M. Kronrod, and I. Faradzev. On
economic construction of the transitive closure of a directed
graph. Soviet Mathematics Doklady, 11:1209–1210, 1970.

[5] S. Blackshear, B.-Y. E. Chang, S. Sankaranarayanan, and
M. Sridharan. The flow-insensitive precision of Andersen’s
analysis in practice. In SAS, pages 60–76, 2011.

[6] V. T. Chakaravarthy. New results on the computability and
complexity of points-to analysis. In POPL, pages 115–125,
2003.

[7] T. M. Chan. All-pairs shortest paths for unweighted undirected
graphs in o(mn) time. In SODA, pages 514–523, 2006.

[8] S. Chaudhuri. Subcubic algorithms for recursive state ma-
chines. In POPL, pages 159–169, 2008.

[9] J.-D. Choi, M. G. Burke, and P. R. Carini. Efficient
flow-sensitive interprocedural computation of pointer-induced
aliases and side effects. In POPL, pages 232–245, 1993.

[10] J. Conway. Regular Algebra and Finite Machines. Chapman
and Hall, London, 1971.

[11] M. Das. Unification-based pointer analysis with directional
assignments. In PLDI, pages 35–46, 2000.

[12] C. Earl, I. Sergey, M. Might, and D. V. Horn. Introspective
pushdown analysis of higher-order programs. In ICFP, pages
177–188, 2012.

[13] M. Fähndrich, J. S. Foster, Z. Su, and A. Aiken. Partial online
cycle elimination in inclusion constraint graphs. In PLDI,
pages 85–96, 1998.

[14] B. Hardekopf. personal communication, 2012.

[15] B. Hardekopf and C. Lin. The ant and the grasshopper: fast
and accurate pointer analysis for millions of lines of code. In
PLDI, pages 290–299, 2007.

[16] N. Heintze and D. A. McAllester. On the cubic bottleneck in
subtyping and flow analysis. In LICS, pages 342–351, 1997.

[17] N. Heintze and O. Tardieu. Ultra-fast aliasing analysis using
CLA: A million lines of C code in a second. In PLDI, pages
254–263, 2001.

[18] M. Hind. Pointer analysis: Haven’t we solved this problem
yet? In PASTE, pages 54–61, 2001.

[19] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction
to automata theory, languages, and computation. Addison-
Wesley-Longman, 2001.

[20] S. Horwitz. Precise flow-insensitive may-alias analysis is NP-
hard. ACM Trans. Program. Lang. Syst., 19(1):1–6, 1997.

[21] V. Kahlon. Bootstrapping: A technique for scalable flow and
context-sensitive pointer alias analysis. In PLDI, pages 249–
259, 2008.

[22] J. Kodumal and A. Aiken. The set constraint/CFL reachability
connection in practice. In PLDI, pages 207–218, 2004.

[23] D. Kozen. Automata and computability. Undergraduate texts
in computer science. Springer, 1997.

[24] W. Landi and B. G. Ryder. Pointer-induced aliasing: A problem
classification. In POPL, pages 93–103, 1991.

[25] W. Landi and B. G. Ryder. A safe approximate algorithm
for interprocedural pointer aliasing. In PLDI, pages 235–248,
1992.

[26] M. Naik, A. Aiken, and J. Whaley. Effective static race
detection for java. In PLDI, pages 308–319, 2006.

[27] F. M. Q. Pereira and D. Berlin. Wave propagation and deep
propagation for pointer analysis. In CGO, pages 126–135,
2009.

[28] P. Pratikakis, J. S. Foster, and M. Hicks. Existential label flow
inference via cfl reachability. In SAS, pages 88–106, 2006.

[29] G. Ramalingam. The undecidability of aliasing. ACM Trans.
Program. Lang. Syst., 16(5):1467–1471, 1994.

[30] J. Rehof and M. Fähndrich. Type-base flow analysis: from
polymorphic subtyping to CFL-reachability. In POPL, pages
54–66, 2001.

[31] T. W. Reps. Shape analysis as a generalized path problem. In
PEPM, pages 1–11, 1995.

[32] T. W. Reps. Program analysis via graph reachability. Informa-
tion & Software Technology, 40(11-12):701–726, 1998.

[33] T. W. Reps, S. Horwitz, S. Sagiv, and G. Rosay. Speeding up
slicing. In SIGSOFT FSE, pages 11–20, 1994.

[34] T. W. Reps, S. Horwitz, and S. Sagiv. Precise interprocedural
dataflow analysis via graph reachability. In POPL, pages 49–
61, 1995.

[35] A. Rountev and S. Chandra. Off-line variable substitution for
scaling points-to analysis. In PLDI, pages 47–56, 2000.

[36] W. Rytter. Fast recognition of pushdown automaton and
context-free languages. Information and Control, 67(1-3):
12–22, 1985.

[37] L. Shang, X. Xie, and J. Xue. On-demand dynamic summary-
based points-to analysis. In CGO, pages 264–274, 2012.

[38] M. Sridharan and R. Bodı́k. Refinement-based context-
sensitive points-to analysis for Java. In PLDI, pages 387–400,
2006.

[39] M. Sridharan and S. J. Fink. The complexity of andersen’s
analysis in practice. In SAS, pages 205–221, 2009.

[40] M. Sridharan, D. Gopan, L. Shan, and R. Bodı́k. Demand-
driven points-to analysis for Java. In OOPSLA, pages 59–76,
2005.

[41] M. Sridharan, S. J. Fink, and R. Bodı́k. Thin slicing. In PLDI,
pages 112–122, 2007.

[42] B. Steensgaard. Points-to analysis in almost linear time. In
POPL, pages 32–41, 1996.

[43] Z. Su, M. Fähndrich, and A. Aiken. Projection merging:
Reducing redundancies in inclusion constraint graphs. In
POPL, pages 81–95, 2000.

[44] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman.
TAJ: effective taint analysis of web applications. In PLDI,
pages 87–97, 2009.

[45] V. Vassilevska. Efficient algorithms for clique problems.
Information Processing Letters, 109(4):254–257, 2009.

[46] H. S. Warren. Hacker’s Delight. Addison-Wesley Longman
Publishing Co., Inc., 2002.

[47] J. Whaley and M. S. Lam. Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams. In PLDI,
pages 131–144, 2004.

[48] X. Xiao, Q. Zhang, J. Zhou, and C. Zhang. Persistent pointer
information. In PLDI, pages 463–474, 2014.

[49] G. Xu, A. Rountev, and M. Sridharan. Scaling CFL-
reachability-based points-to analysis using context-sensitive
must-not-alias analysis. In ECOOP, pages 98–122, 2009.

[50] D. Yan, G. H. Xu, and A. Rountev. Demand-driven context-
sensitive alias analysis for Java. In ISSTA, pages 155–165,
2011.

[51] M. Yannakakis. Graph-theoretic methods in database theory.
In PODS, pages 230–242, 1990.

[52] Q. Zhang, M. R. Lyu, H. Yuan, and Z. Su. Fast algorithms for
Dyck-CFL-reachability with applications to alias analysis. In
PLDI, pages 435–446, 2013.

[53] S. Zhang, B. G. Ryder, and W. Landi. Program decomposition
for pointer aliasing: A step toward practical analyses. In
SIGSOFT FSE, pages 81–92, 1996.

[54] X. Zheng and R. Rugina. Demand-driven alias analysis for C.
In POPL, pages 197–208, 2008.

