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ABSTRACT

Existing approaches for program debloating often use a usage pro-
file, typically provided as a set of inputs, for identifying the features
of a program to be preserved. Specifically, given a program and
a set of inputs, these techniques produce a reduced program that
behaves correctly for these inputs. Focusing only on reduction,
however, would typically result in programs that are overfitted
to the inputs used for debloating. For this reason, another impor-
tant factor to consider in the context of debloating is generality,
which measures the extent to which a debloated program behaves
correctly also for inputs that were not in the initial usage profile.
Unfortunately, most evaluations of existing debloating approaches
only consider reduction, thus providing partial information on the
effectiveness of these approaches. To address this limitation, we
perform an empirical evaluation of the reduction and generality of
4 debloating techniques, 3 state-of-the-art ones, and a baseline, on
a set of 25 programs and different sets of inputs for these programs.
Our results show that these approaches can indeed produce pro-
grams that are overfitted to the inputs used and have low generality.
Based on these results, we also propose two new augmentation
approaches and evaluate their effectiveness. The results of this addi-
tional evaluation show that these two approaches can help improve
program generality without significantly affecting size reduction.
Finally, because different approaches have different strengths and
weaknesses, we also provide guidelines to help users choose the
most suitable approach based on their specific needs and context.
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1 INTRODUCTION

Programs in today’s world are increasingly complex. In particular,
they contain an abundance of features that aim to provide ser-
vice to a wide range of users. In practice, however, only a small
fraction of the implemented features are typically accessed, leav-
ing a significant amount of them unneeded [34], which leads to
code bloat [12, 46, 76]. Code bloat is pervasive [24, 38, 51] and
can severely harm program performance [13, 74, 76] and secu-
rity [9, 63]. To mitigate this problem, many program debloating
techniques have emerged that aim to identify and eliminate a pro-
gram’s unneeded features and produce a reduced version of it
(e.g., [33, 49, 50, 64, 69, 70]).

Specifying the desired features of a program is in general a
hard problem. As with the mainstream approaches from other do-
mains, such as program repair [41], existing program debloating
approaches often use a usage profile, typically provided in the form
of a set of inputs, as a proxy for a specification [15, 33, 49, 67, 70].
We refer to these approaches as input-based approaches. Given a
program and a set of inputs, an input-based approach performs
code pruning to produce a reduced program that behaves correctly
for the given inputs. Unfortunately, because a set of inputs can
typically provide only an under-approximation of a program’s ex-
pected behaviors, an input-based approach is likely to produce a
program that is overfitted to the inputs used and easily fails for
other, unobserved inputs. For example, with two inputs “foo” and
“-p foo/bar”, the input-based technique Chisel produces an overly
reduced version ofmkdir (a utility for creating directories) with the
loop that identifies parent directories (Figure 1, line 1) eliminated.
Chisel deemed the loop to be unnecessary, as its body was exer-
cised only once. Consider now an additional input “-p foo/bar/baz”.
Although similar in nature to “-p foo/bar”, the debloated program
would not handle this input correctly, as the removal of the loop
prevents it from processing the second slash (“/”) and creating the
needed directories.

The issue is that this type of input-based approaches are usually
not really meant to produce a debloated program that merely han-
dles the provided inputs 𝐼 , but rather (and intuitively) a program
that can handle the features characterized by 𝐼 . For example, a neg-
ative integer input in 𝐼 may indicate the need to handle all negative
integer inputs, or at least all the negative integer inputs within a
given range. If that were not the case, and 𝐼 could fully characterize
the required functionality, one could simply synthesize a program
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that uses a map to return, for any observed input, the expected
output—a program that would be useless for any unobserved inputs.

In general, a debloating approach must therefore account for, in
addition to program reduction, program generality, that is the ability
to correctly handle unobserved inputs. Based on what we discussed
above, this is especially true for those inputs that are possibly related
to 𝐼 , in the sense that they exercise similar features. Unfortunately,
there is an inherent tension between reduction and generality [70],
which means that debloating approaches must try to achieve a good
tradeoff between these two conflicting factors [70, 71].

Early debloating approaches [33, 58, 68] tended to pursue ag-
gressive size reduction without considering generality. Two more
recent approaches, Debop [70] and Razor [49], began to account
for generality but did not properly measure it: Debop evaluates
program generality based on the provided inputs, rather than un-
observed ones, whereas Razor uses a weak (crash-based) oracle to
determine a program’s behavioral correctness and to then evaluate
generality. Also, none of these approaches measured the tradeoff
between reduction and generality. For these reasons, it remains
largely unknown how the existing input-based approaches perform
in terms of addressing both reduction and generality for debloating.

To fill this gap, we conducted a study to evaluate how input-based
debloating approaches perform in terms of reduction, generality,
and their tradeoff.We investigated three state-of-the-art approaches
designed for C programs (Chisel, Debop, and Razor), along with a
baseline that we developed (Cov), which performs debloating based
on code coverage. We applied these approaches to two benchmarks
containing a total of 25 programs, using different sets of inputs
for debloating (debloating inputs) and for generality evaluation
(testing inputs). To evaluate a debloating approach, we used two
types of reductions, based on size and attack surface, and two types
of generality, based on correctness (c-generality) and robustness
(r-generality). We quantified the tradeoffs between different types
of reduction and generality in terms of F-score measures.

The results of our experiment show that Chisel and Debop,
which do not account for a program’s ability to handle unobserved
inputs, may produce debloated programs with low c-generality. For
one of the benchmarks, for instance, the debloated program behaved
correctly for less than 44% of all the testing inputs and less than 56%
of the testing inputs "related" to the debloating inputs. Conversely,
Razor, by performing coverage-based reduction and heuristic-
based augmentation (which infers and preserves unexercised-but-
related code), can produce programs with increased c-generality
(behaving correctly for 51% of the testing inputs and 69% of the
"related" testing inputs) without affecting reduction in a significant
way. Unfortunately, however, the debloated programs produced
by Razor are also ultimately not robust—they exhibit crashes or
non-termination behaviors for many testing inputs.

Based on our findings, we developed two augmentation-based ap-
proaches, CovF and CovA, that aim to improve the r-generality and
c-generality of debloated programs while achieving good reduction-
generality tradeoffs. The two approaches are built upon Cov, which,
according to our results, is considerably more efficient than the
other approaches that perform source code reduction and can often
achieve similar tradeoffs. CovF and CovA perform fuzz-based and

analysis-based code augmentation, respectively, to identify com-
plementary, related code and preserve such code in the debloated
program.

Specifically, given a program 𝑝 and a set of inputs 𝐼 , both CovF
and CovA first invoke Cov to remove from 𝑝 code that is not exer-
cised by 𝐼 , which results in program 𝑝𝑐𝑜𝑣 . Then, for augmentation,
CovF leverages fuzzing to generate inputs that can expose 𝑝𝑐𝑜𝑣 ’s
robustness issues and adds back code from 𝑝 that is exercised by
these inputs to eliminate the identified issues. CovA, conversely,
does not rely on specific inputs for augmentation. Rather, it aug-
ments 𝑝𝑐𝑜𝑣 by leveraging information computed using static and
dynamic analyses, namely, static program dependencies, execution
frequency, and coverage flexibility, which measures differences in
code coverage to identify parts of 𝑝 that are related to 𝑝𝑐𝑜𝑣 . Intu-
itively, by focusing on either (1) handling inputs leading to 𝑝𝑐𝑜𝑣 ’s
crashes or non-termination (CovF), or (2) keeping code related to
𝑝𝑐𝑜𝑣 (CovA), these approaches are more likely to produce programs
with enhanced robustness and correctness.

We evaluated CovF and CovA on the same benchmarks used
for the state-of-the-art approaches and found that they can indeed
produce programswith enhanced generality.Most importantly, they
can achieve these improvements without significantly increasing
program size, and thus obtain better tradeoffs between generality
and size reduction than Cov and other approaches performing
source code reduction.

As noted by Xin et al. [70], debloating in a realistic scenario often
involves multiple, conflicting goals. In our study, in particular, we
considered four specific goals and is expected to produce programs
with high size reduction, attack surface reduction, c-generality, and
r-generality. We found that each of the approaches we considered
has its own strengths and weaknesses, and no approach is the
winner in all cases. Based on the analysis of these approaches, we
therefore also provide guidelines that can help users choose the
most suitable approach based on their specific needs.

In summary, using a set of representative inputs that reflects
which features of a program should be preserved is a practical way
of achieving program debloating, as long as the right techniques
are used and relevant tradeoffs are considered. We believe that our
study, along with the approaches we developed, can provide lessons
learnt and resources for both current users of debloating techniques
as well as for future research on input-based debloating.

The main contributions of this paper are:

• A study that systematically assesses and compares six input-
based debloating approaches based on different types of code
reduction, generality, and their tradeoffs. Our result shows that
existing input-based debloating approaches tend to produce pro-
grams that are overfitted to the inputs used to guide debloating
and have low generality.

• Two novel augmentation-based approaches, CovF and CovA,
that show how augmentation can effectively mitigate the over-
fitting problem in input-based debloating techniques and can be
used to achieve good tradeoffs between reduction and generality.

• A discussion on the different strengths and weaknesses of input-
based debloating approaches that provides guidance on how to
choose a debloating approach that best suits specific goals and
can guide future research in this area.
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Figure 1: An example of debloated code produced by Chisel.

• An artifact that contains our experimental data and results,
together with the prototype implementation of the two ap-
proaches we developed (CovF and CovA), and is available at
https://github.com/qixin5/debloating_study.

2 BACKGROUND

In this section, we provide the definitions of input-based debloating.
We also define different debloating measures in terms of reduction,
generality, and their tradeoffs.

2.1 Input-Based Debloating

Let 𝑝 be a deterministic program and 𝐼 be a set of inputs for 𝑝 . We
use 𝑝 (𝑖) to denote the result of running 𝑝 with input 𝑖 . Given 𝑝 and
𝐼 , input-based debloating is the process of removing code from 𝑝 to
produce a reduced program 𝑝 ′ such that, for each 𝑖 ∈ 𝐼 , we have
𝑝 (𝑖) = 𝑝 ′(𝑖).

2.2 Debloating Measures

2.2.1 Reduction. Given a program 𝑝 and its debloated version 𝑝 ′,
we use reduction to indicate the amount of code that has been
removed. As with previous work [33, 49, 70], we consider two types
of reduction: (1) size reduction and (2) attack surface reduction. Given
𝑝 and 𝑝 ′, size reduction 𝑠𝑟𝑒𝑑 is computed as

𝑠𝑟𝑒𝑑 (𝑝, 𝑝 ′) = 𝑠𝑖𝑧𝑒 (𝑝) − 𝑠𝑖𝑧𝑒 (𝑝 ′)
𝑠𝑖𝑧𝑒 (𝑝) ,

where 𝑠𝑖𝑧𝑒 (·) measures the program’s size. We consider two types
of sizes: (a) number of statements and (b) number of bytes of the
executable memory region. These size measurements were used in
the evaluation of Chisel [33] and Razor [49]. In our study, we use
these tools’ size measuring utilities to compute (a) and (b).

Similarly, given 𝑝 and 𝑝 ′, attack surface reduction 𝑎𝑟𝑒𝑑 is com-
puted as

𝑎𝑟𝑒𝑑 (𝑝, 𝑝 ′) = 𝑎𝑠𝑢𝑟 𝑓 (𝑝) − 𝑎𝑠𝑢𝑟 𝑓 (𝑝 ′)
𝑎𝑠𝑢𝑟 𝑓 (𝑝) ,

where 𝑎𝑠𝑢𝑟 𝑓 (·) measures a program’s attack surface in terms of
number of Return-Oriented-Programming (ROP) gadgets it contains.
An ROP gadget [63] is a sequence of machine instructions that
(typically) ends with a return instruction. An attacker can take
advantage of a vulnerability (e.g., stack overflow) to overwrite
a gadget’s return address to divert the control flow and execute
malicious code [63]. ROP gadgets are typically used for measuring
attack surface [33, 49, 64, 70]. As in [33], we use the ROPgadget
tool [59] to count ROP gadgets.

2.2.2 Generality. Given a program 𝑝 and its debloated version
𝑝 ′ generated based on a set of inputs 𝐼 , we define two types of

generality, correctness-based (c-generality) and robustness-based
(r-generality), to measure the extent to which 𝑝 ′ could behave cor-
rectly and robustly, respectively, for inputs not in 𝐼 . To quantify
c-generality, we gather a different set of inputs 𝐼 ′ (𝐼 ′ ∩ 𝐼 = ∅) and
measure the fraction of inputs of 𝐼 ′ for which 𝑝 ′ behaves correctly.
Formally, for c-generality 𝑐𝑔𝑒𝑛, we have

𝑐𝑔𝑒𝑛(𝑝 ′, 𝐼 ′) =
∑
𝑖′∈𝐼 ′ 𝑝

′(𝑖 ′) = 𝑝 (𝑖 ′)
|𝐼 ′ | ,

where 𝑝 (·) and 𝑝 ′(·) denote the outputs produced by 𝑝 and 𝑝 ′, and
|𝐼 ′ | denotes the number of inputs in 𝐼 ′. We investigate two types
of c-generality evaluated based on different types of 𝐼 ′. When 𝐼 ′

represents a universal set of inputs, we refer to the computed gen-
erality as all-input-based c-generality. When 𝐼 ′ is a set comprising
only inputs that are related to 𝐼 (e.g., in exercising similar features),
we refer to the generality as related-input-based c-generality. Note
we do not use the generality measure from [70], as that measure is
computed based on a single set of inputs; it is designed to guide the
optimization process and is not suitable for evaluating debloated
programs.

In addition to c-generality, we also investigated r-generality,
which measures a debloated program’s resilience to unobserved
inputs and reflects the program’s reliability. To quantify r-generality,
we gather a different set of inputs 𝐼 ′ (𝐼 ′ ∩ 𝐼 = ∅) representing the
usage of 𝑝 in invalid cases and measure the fraction of inputs of 𝐼 ′
for which 𝑝 ′ does not exhibit a crash and terminates. Formally, for
r-generality 𝑟𝑔𝑒𝑛, we have

𝑟𝑔𝑒𝑛(𝑝 ′, 𝐼 ′) =
∑
𝑖′∈𝐼 ′ 𝑟𝑜𝑏𝑢𝑠𝑡 (𝑝 ′(𝑖 ′))

|𝐼 ′ | ,

where 𝑟𝑜𝑏𝑢𝑠𝑡 (·) indicates whether the program execution termi-
nates with no crash (e.g., no segmentation fault). In our study, we
obtained 𝐼 ′ by producing a fuzzed version of 𝐼 .

2.2.3 Reduction-generality tradeoff. To quantify the tradeoff be-
tween reduction 𝑟𝑒𝑑 (either size-based or attack-surface-based) and
generality 𝑔𝑒𝑛 (either correctness-based or robustness-based), we
use the harmonic mean, or F-score, 𝑓 computed as

𝑓 (𝑟𝑒𝑑, 𝑔𝑒𝑛) = 2 · 𝑟𝑒𝑑 · 𝑔𝑒𝑛
𝑟𝑒𝑑 + 𝑔𝑒𝑛 .

A high F-score indicates both high reduction and high generality.
When an approach pursues aggressive reduction or generality at
the cost of the other, it will produce a program with a low F-score.
In the extreme case, where none or all of the program’s code is
pruned, reduction or generality (but not both) is 0, and the F-score
is 0.

3 DEBLOATING APPROACHES CONSIDERED

In this section, we discuss the debloating approaches we consid-
ered. All these approaches perform input-based debloating. Among
these approaches, Razor is a binary-based approach that modifies
a program’s binary. The other approaches reduce program’s source
code and are source-based.

https://github.com/qixin5/debloating_study
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3.1 Previous Input-Based Approaches: Chisel,

Debop, and Razor

Chisel is a reduction-oriented approach based on a reinforcement-
learning-guided delta-debugging-based algorithm for debloating.
Debop is a multi-objective approach that takes three factors (size
reduction, attack surface reduction, and generality) into considera-
tion, and performs stochastic optimization to produce a debloated
program, aiming to achieve an optimal tradeoff between these
factors. Razor performs binary-level debloating based on tracing,
heuristic-based augmentation, and binary-rewriting. Specifically, it
uses four heuristics with increasing aggressiveness in identifying
feature-related code. More details of these approaches can be found
in [33], [70], and [49].

3.2 Cov: Coverage-Based Debloating

Cov is an approach we developed that performs coverage-based de-
bloating. Given a program 𝑝 and a set of inputs 𝐼 , Cov instruments
𝑝 and executes it against 𝐼 to identify all the statements exercised
by 𝐼 . To produce a debloated program, it removes statements that
are not exercised together with those that are exercised but are
actually unneeded (e.g., a variable declaration that is never used). A
prototype of Cov we implemented uses llvm-cov [42] and gcov [27]
for instrumentation. It relies on Clang [21] to build the program’s
abstract syntax tree (AST), and traverses the AST to identify all
the statements. By analyzing the coverage report generated by the
instrumentation tools, Cov finds statements not exercised in the
execution and deletes them. It additionally deletes, through depen-
dency analysis, unnecessary statements, including (1) “dangling”
instructions with empty bodies and side-effect-free conditions (e.g.,
if (x==0) {}), (2) unused variable declarations, and (3) unused label
statements.

3.3 CovF: Coverage-Based Debloating with

Fuzz-Based Augmentation

A coverage-based approach, by eliminating the unexercised code, is
likely to produce a program that is overly reduced. Such a program
is not robust and can easily crash or hang (i.e., cannot terminate) for
an unobserved input. To address this problem, we developed CovF,
an approach that performs fuzz-based augmentation to produce
debloated programs with enhanced r-generality (robustness). Given
a program 𝑝 and a set of inputs 𝐼 , CovF first invokes Cov to produce
a reduced program 𝑝𝑐𝑜𝑣 . Next, it performs fuzzing to produce, based
on 𝐼 , a set of inputs 𝐼 ′ that are “robustness-related” and can make
𝑝𝑐𝑜𝑣 crash or hang. In its current implementation, CovF produces
𝐼 ′ by first applying the blackbox fuzzer Radamsa [53] to 𝐼 , to obtain
an initial set of fuzzed inputs 𝐼 ′

𝑖𝑛𝑖𝑡
, and then running 𝑝𝑐𝑜𝑣 against

𝐼 ′
𝑖𝑛𝑖𝑡

, to identify 𝐼 ′ ∈ 𝐼 ′
𝑖𝑛𝑖𝑡

whose inputs make 𝑝𝑐𝑜𝑣 crash or hang.
The reason why 𝑝𝑐𝑜𝑣 crashes or hangs for an unobserved input 𝑖 ′
could be the lack of needed code in 𝑝 for correctly processing 𝑖 ′.
Therefore, in its final step, CovF produces a debloated program
by preserving statements in 𝑝 that are exercised by 𝐼 ′ and 𝐼 and
removing all others. Note that it is possible that the original 𝑝
exhibits robustness issues for an unobserved input 𝑖 ′. In that case,
the robustness issues were not caused by debloating, and CovF, by
performing augmentation, would not help resolve the problem.

3.4 CovA: Coverage-Based Debloating with

Analysis-Based Augmentation

A fuzz-based approach focusing on robustness enhancement is
prone to producing many irregular inputs that exercise a program’s
non-core logic and fail to exercise the different features of the
program. Therefore, this kind of augmentation cannot easily lead
to a significant improvement of c-generality. For example, it would
not be easy to obtain, by fuzzing input 𝑖: “-m 777 testdir” for mkdir,
another input 𝑖 ′: “-m a=rwx testdir”, which is related to 𝑖 because it
exercise a related feature 𝑓—making a directory with permission
expressed symbolically instead of numerically. Without finding
valid inputs such as 𝑖 ′, a fuzz-based approach cannot augment a
debloated program to preserve 𝑓 .

In order to achieve better improvements of c-generality, we de-
veloped another analysis-based approach: CovA. CovA performs
static and dynamic analyses to infer related code for augmenta-
tion based on dependency relationship among functions and the
program’s execution traces obtained with the debloating inputs. Un-
like CovF, which relies on finding specific inputs for augmentation,
CovA directly identifies functions that may be feature-related and
preserves them entirely in the final debloated program. By targeting
functions for augmentation, CovA reduces the likelihood of pro-
ducing programs that are syntactically or semantically invalid (e.g.,
programs that contain a loop but do not contain a critical break
statement). CovA computes, for each function, an augmentation
score approximating how much related it is to the desired features
and how relevant it is for augmentation based on the functions’ de-
pendency relationship, their execution frequency, and the variance
of coverage obtained from its analyses. Intuitively, a function that
is higher-level (in terms of dependencies) and is exercised by more
inputs in 𝐼 is considered to be more feature-related. Moreover, if the
coverage of the function varies when exercised by more inputs, it is
considered to need additional augmentation to handle unobserved
inputs that may exercise new code. Based on the computed scores,
CovA ranks the functions and selects the top-K for augmentation.

More formally, given a program 𝑝 , a set of debloating inputs 𝐼 ,
and an augmentation threshold 𝑡𝑜𝑝𝑘 , CovA first obtains all the
functions defined in 𝑝 . It then performs analyses to compute, for
each function 𝑓 , three scores: specificity 𝑠𝑝𝑒𝑐 , frequency 𝑓 𝑟𝑒𝑞, and
flexibility 𝑓 𝑙𝑒𝑥 , and saves these in a map. CovA normalizes these
scores based on all the functions. Given these scores, CovA com-
putes the average of the normalized scores as the augmentation
score 𝑎𝑢𝑔(𝑓 ):

𝑎𝑢𝑔(𝑓 ) = 𝑠𝑝𝑒𝑐𝑛 (𝑓 ) + 𝑓 𝑟𝑒𝑞𝑛 (𝑓 ) + 𝑓 𝑙𝑒𝑥𝑛 (𝑓 )
3

,

where 𝑠𝑝𝑒𝑐𝑛 , 𝑓 𝑟𝑒𝑞𝑛 , and 𝑓 𝑙𝑒𝑥𝑛 are the normalized results of 𝑠𝑝𝑒𝑐 ,
𝑓 𝑟𝑒𝑞, and 𝑓 𝑙𝑒𝑥 , respectively. Finally,CovA sorts the functions based
on their augmentation score and produces a debloated program
by preserving (1) statements of 𝑝 exercised by 𝐼 plus (2) all the
statements of the top-K functions. It also removes unneeded code
using an approach similar to the one described in Section 3.2. We
next discuss how to compute specificity, frequency, and flexibility
in turn.

Specificity. CovA performs static analysis, more specifically de-
pendency analysis, to compute specificity, which quantifies the
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extent to which a function is related to program-specific features.
Since CovA’s augmentation targets feature-related code, a function
with higher specificity is of more interest. Conversely, a function
that has low specificity is likely to behave more like a utility (li-
brary) and serve a more general purpose, so CovA considers it low
priority for augmentation. To compute specificity, CovA builds a
function call graph and computes, for each function 𝑓 , a utilityhood
based on the fan-in and fan-out of 𝑓 , that is, on the number of
functions on which 𝑓 depends and the number of functions that
depend on 𝑓 . Specifically, CovA uses the metric defined in [32] to
compute the utilityhood of a function 𝑓 and computes specificity
𝑠𝑝𝑒𝑐 as 1 − 𝑢𝑡𝑖𝑙 :

𝑠𝑝𝑒𝑐 (𝑓 ) = 1 − 𝑢𝑡𝑖𝑙 (𝑓 ) = 1 − 𝑓 𝑎𝑛𝑖𝑛(𝑓 )
𝑁

×
𝑙𝑜𝑔( 𝑁

𝑓 𝑎𝑛𝑜𝑢𝑡 (𝑓 )+1 )
𝑙𝑜𝑔(𝑁 ) ,

where𝑁 is the total number of functions and 𝑓 𝑎𝑛𝑖𝑛(𝑓 ) and 𝑓 𝑎𝑛𝑜𝑢𝑡 (𝑓 )
are the fan-in and fan-out values for 𝑓 . 𝑓 𝑎𝑛𝑖𝑛(𝑓 ) is the number of
functions that call 𝑓 in the graph, and 𝑓 𝑎𝑛𝑜𝑢𝑡 (𝑓 ) is the number of
functions that 𝑓 calls. Because, as explained in [32], the values of
fan-in and fan-out vary between 0 to |𝑁 | − 1 (self-dependencies are
ignored), the value of 𝑢𝑡𝑖𝑙 (𝑓 ) is between 0 and 1. In the definition
of 𝑢𝑡𝑖𝑙 (𝑓 ), a function 𝑓 that has a larger number of callers (larger
value of 𝑓 𝑎𝑛𝑖𝑛(𝑓 )) and a smaller number of callees (smaller value
of 𝑓 𝑎𝑛𝑜𝑢𝑡 (𝑓 )) is considered more self-contained and thus has a
higher utilityhood. Because such a function 𝑓 behaves more like a
utility, it has a lower specificity.

Frequency. CovA executes the program with each input in 𝐼 and
computes, for each function 𝑓 , the frequency 𝑓 𝑟𝑒𝑞 as

𝑓 𝑟𝑒𝑞(𝑓 , 𝐼 ) =
𝑁𝑓

𝑁𝐼
,

where 𝑁𝑓 is the number of inputs that exercise 𝑓 , and 𝑁𝐼 is the total
number of inputs in 𝐼 . Intuitively, a function that is exercised by
more inputs in 𝐼 is more likely to be related to the features exercised
by 𝐼 .

Flexibility. CovA also analyzes the execution of a function 𝑓 to
compute its flexibility. For each 𝑓 that is exercised by 𝐼 ,CovA tracks,
for each input 𝑖 ∈ 𝐼 , the set of all the statements 𝑖 exercises, 𝑆 (𝑓 , 𝑖). If
𝑓 is not exercised by 𝑖 , 𝑆 (𝑓 , 𝑖) = ∅. Next, it counts the unique sets of
statements in 𝑓 exercised by the inputs in 𝐼 , 𝑐 (𝑓 , 𝐼 ). As an example,
assume that 𝐼 contains three inputs, 𝑖0, 𝑖1, and 𝑖2, and the sets of
statements in 𝑓 exercised by these inputs are 𝑆 (𝑓 , 𝑖0) = {𝑠0, 𝑠1},
𝑆 (𝑓 , 𝑖1) = {𝑠0}, and 𝑆 (𝑓 , 𝑖2) = {𝑠0, 𝑠1}, where 𝑠0, 𝑠1, and 𝑠2 are three
statements. In this case, 𝑐 (𝑓 , 𝐼 ) = 2, as there are two unique sets of
statements. Using 𝑐 (𝑓 , 𝐼 ), CovA computes the flexibility 𝑓 𝑙𝑒𝑥 of 𝑓
as

𝑓 𝑙𝑒𝑥 (𝑓 , 𝐼 ) = 𝑐 (𝑓 , 𝐼 )
𝑁𝐼

,

where 𝑁𝐼 is the number of inputs in 𝐼 . The fact that a function has
lower flexibility implies that its execution is less likely to change
for unobserved inputs, so CovA considers it low priority for aug-
mentation.

It is worth noting that, although CovF and CovA are developed
based on Cov, their augmentation methods can be adapted and
used by other approaches.

Table 1: Benchmark programs and inputs.

Bench Program LOC #Func #Stmt #TotalIn #MinIn #MaxIn AvgIn

Util

bzip2-1.0.5 11,782 97 6,154 59 2 13 5.9
chown-8.2 7,081 122 3,765 111 3 20 11.1
date-8.21 9,695 78 4,228 174 5 45 17.4
grep-2.19 22,706 315 10,977 145 4 27 14.5
gzip-1.2.4 8,694 91 4,049 81 3 12 8.1
mkdir-5.2.1 5,056 43 1,804 50 2 12 5.0
rm-8.4 7,200 135 3,835 84 3 16 8.4
sort-8.16 14,264 233 7,805 117 5 32 11.7
tar-1.14 30,477 473 13,995 84 3 16 8.4
uniq-8.16 7,020 65 2,086 72 2 12 7.2
Total 123,975 1,652 58,698 977 32 205 97.7

LSIR

bash-2.05 58,319 1,003 27,646 1,061 1,061 1,061 1,061
flex-2.5.4 15,518 162 6,704 670 670 670 670
grep-2.4.2 16,203 131 8,437 806 806 806 806
gzip-1.3 8,882 97 4,287 213 213 213 213
make-3.79 26,118 248 12,901 1,832 1,832 1,832 1,832
sed-4.1.5 18,866 247 9,179 370 370 370 370
space 8,215 136 4,376 13,549 13,549 13,549 13,549
vim-5.8 136,531 1,699 66,080 975 975 975 975
Total 288,652 3,723 139,610 19,476 19,476 19,476 19,476

SSIR

printtokens2 824 19 341 4,058 4,058 4,058 4,058
printtokens 1,069 18 396 4,073 4,073 4,073 4,073
replace 938 21 416 5,542 5,542 5,542 5,542
schedule2 604 16 238 2,710 2,710 2,710 2,710
schedule 537 18 211 2,650 2,650 2,650 2,650
tcas 382 9 162 1,608 1,608 1,608 1,608
totinfo 586 7 265 1,052 1,052 1,052 1,052
Total 4,940 108 2,029 21,693 21,693 21,693 21,693

4 EVALUATION

We investigated the following four research questions:

• RQ1: How do the approaches considered compare in terms of
reduction, c-generality, and their tradeoff?

• RQ2: How do the approaches considered compare in terms of
reduction, r-generality, and their tradeoff?

• RQ3: How do the approaches considered perform when an
increasing amount of inputs is used for debloating?

• RQ4: How efficient are the approaches?

4.1 Tool Implementation

We used the implementation of Chisel [19], Debop [22], and Ra-
zor [56] provided by their authors and implemented the other
approaches based on their description in Section 3.

4.2 Benchmarks

4.2.1 Benchmark programs. In our evaluations, we used two sets
of programs: ten utility programs (Util) and 15 programs from the
SIR benchmark [2] (SIR). We used the ten utilities because they
were used in the evaluation of previous debloating approaches [33,
49, 70]. For these programs, we used their all-in-one-file versions
provided in Chisel’s benchmark [20]. An all-in-one-file program
contains a single C file that combines all of the original C source
files in the project. In addition to the utilities, we also used a set
of 15 programs, which are all the C programs provided in the SIR
benchmark. They represent a range of programs of different types
including a lexical analyzer (printtokens), a utility (e.g.,make), a Unix
shell (bash), and a text editor (vim). We also chose these benchmarks
because they have a large number (from hundreds to thousands)
of tests associated. Having a large number of tests allows us to
effectively evaluate a debloated program’s generality and to perform
a thorough investigation of the effectiveness of debloating with an
increasing amount of inputs. For the SIR programs, we used the
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CIL merger [1] to obtain all-in-one-file versions for debloating for
them as well.

Table 1 presents the 25 programs considered in terms of the
specific benchmark to which they belong (Bench), name (Program),
size in lines of code (LOC), and number of functions (#Func) and
statements (#Stmt). The SIR benchmark contains seven programs
(SSIR) whose sizes are considerably smaller than those of the other
eight ones (LSIR). Although we compared all approaches on all
programs, we focus on analyzing and presenting the results for the
utilities and the large SIR programs (LSIR), as debloating is typically
not applied to small programs for reduction. We will nevertheless
provide a summary of the results for SSIR in Sections 4.4.4 and 4.5.

Because current implementations of the source-based approaches
(i.e., Chisel, Debop, and Cov) only work as intended on programs
whose source code is merged (by CIL), we are currently unable to
investigate their effectiveness on very large programs without in-
vesting non-trivial effort in either improving their implementation
or making CIL (currently not maintained) work for such programs.
We therefore leave this kind of evaluation for future work.

4.2.2 Inputs. For each program, we used different sets of inputs for
debloating and for generality evaluation. Because the latter needs a
large number of inputs, we did not use for the utilities the original
set of inputs associated with the programs, which is small in size
and was artificially created. Instead, we searched for user inputs
online from different websites. Specifically, we collected ten sets of
inputs for each utility via Google Search [29], using a program’s
name plus the word “usage” as the search query. Each set of inputs
is from a specific website demonstrating the usage of the program
from a real user. A list of all the websites from which we extracted
inputs is available at [3]. In cases in which a file was needed for
the user input, and one was not provided, we generated a file with
random content. Table 1 presents the statistics of the inputs in terms
of #TotalIn, #MinIn, #MaxIn, and #AvgIn: #TotalIn is the total number
of inputs from all input sets; #MinIn is the number of inputs in the
set with the smallest number of inputs among all the sets of inputs
collected, 𝑆𝑚𝑖𝑛 ; #MaxIn is the number of inputs in the set with the
largest number of inputs, 𝑆𝑚𝑎𝑥 ; and #AvgIn is the average number
of inputs among all the input sets. For the SIR programs, we used
the inputs associated with the programs provided in [2]. Table 1
presents the total number of inputs (#TotalIn) for these programs.
Because each SIR program has a single set of inputs associated with
it, the four measures have the same value.

For the utilities, we applied each debloating approach considered
using each of the ten input sets, while we used the other input sets
for c-generality evaluation. For each SIR program, we divided the
set of inputs associated with a program, 𝐼𝑢 , into two subsets, 𝐼𝑑 and
𝐼𝑒 , which we used for debloating and for evaluating c-generality,
respectively. We created 𝐼𝑑 by randomly selecting ten inputs from
𝐼𝑢 , so as to make its size approximately equal to the number of
inputs (97.7/10 = 9.7) used for debloating Util programs and mimic
real usage. We also created three additional 𝐼𝑑 sets comprising 10%,
20%, and 30% of the inputs from 𝐼𝑢 , and obtained the correspond-
ing 𝐼𝑒 sets, to investigate the relationship between input size and
debloating effectiveness.

To evaluate related-input-based c-generality, we used different
approaches to identify related inputs for different programs. For

programs accepting command-line inputs with options (e.g., bzip2),
we considered two inputs to be related if they used the same set
of options, following an approach similar to the one performed
in the evaluation of Razor [49]. For bash and vim, the provided
inputs were already tagged with a label indicating the functionality
they exercised (e.g., “arith” for the arithmetic functionality). For
these inputs, therefore, we used the tags to determine relatedness.
For all other programs, which consisted of the SSIR programs, we
considered all inputs to be related.

To evaluate r-generality, we used Radamsa [53] and AFL [4] to
produce, based on the debloating inputs, a set of fuzzed inputs 𝐼 ′.
(Note that we did not use the fuzzed inputs used in the evaluation
of r-generality in CovF’s debloating process.) We produced 𝐼 ′ with
Radamsa by selecting at most ten inputs within 𝐼 and generating
100 fuzzed versions for each selected input. To generate 𝐼 ′ with AFL,
we ran it for 30 minutes based on the debloated program and each
of the previously selected inputs. The time threshold we used for
fuzzing a debloated program was five hours. Because AFL’s fuzzing
process is expensive, we selected ten programs from the Util and
LSIR benchmarks (five each) for this experiment. We also excluded
Razor, as we discovered that AFL did not correctly fuzz Razor’s
debloated binaries in its QEMU mode [4]. Finally, we performed
input sampling, as input fuzzing and testing for all programs over
all inputs would have been too time consuming. We leave as future
work a more extensive evaluation of program robustness.

4.2.3 Oracles. We need oracles to evaluate a program’s behavioral
correctness and its robustness. Correctness-based oracles check
whether a debloated program behaves correctly for a test input
by comparing the output of the debloated program against that of
the original program. For the utilities, we considered as output a
program’s exit value, any printed message, and any file generated.
For files, the oracles check the file content (and ownership and
permission when needed). It is worth noting that we designed the
oracles based specifically on the programs and inputs considered,
and that the oracles are only needed for the evaluation. For the SIR
programs, we used the oracles provided in the original tests to
identify program outputs for comparison. In addition, for robustness
evaluation, we developed an oracle that checks whether a program
crashes or does not terminate. To determine whether a program
crashed, the oracle checks for a list of exit codes (131–136 and
139) that represent abnormal termination, including segmentation
fault, floating point exception, and bus error. To determine non-
termination, we ran a debloated program against a fuzzed input
for at most ten seconds, which was long enough for all the correct
executions we considered to terminate, and the oracle checked
whether there was a timeout.

4.3 Setup

4.3.1 Evaluation Method. For each utility 𝑝 , we obtained ten sets of
inputs and used debloating approach 𝑇 to produce a debloated pro-
gram 𝑝 ′ for 𝑝 based on each set of inputs. In this way, we obtained
ten debloated programs for each 𝑇 . We measured the reduction,
generality, and tradeoff scores for these programs, and computed
their average as the scores achieved by 𝑇 . To measure c-generality,
we executed 𝑝 ′ against each set of inputs not used for debloating
(for a total of nine sets) and computed the average ratio of inputs
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for which 𝑝 ′ behaved correctly. For each SIR program 𝑝 , we used a
debloating approach𝑇 to produce a debloated program 𝑝 ′ based on
𝐼𝑑 , the debloating inputs, and evaluated the c-generality of 𝑝 ′ based
on 𝐼𝑒 , the testing inputs. We used the fuzzed inputs and oracles
described in Sections 4.2.2 and 4.2.3 to evaluate the r-generality
(robustness) of 𝑝 ′.

4.3.2 Parameters. We used their default parameter values to run
Chisel, Debop, and Razor. Because Chisel and Debop are com-
putationally expensive, we ran both approaches for a maximum of
six hours to produce a program based on each set of inputs. Razor
performs augmentation in four levels, and we experimented with
all these levels. For CovF, we selected a maximum of 100 inputs
within the input set and used Radamsa to produce 10 fuzzed inputs
for each selected input for debloating. For CovA, which selects
the top-K functions for augmentation, we experimented with 15
values of K (from 1% to 5% and from 10% to 50%) and compared
the different results. To measure generality, because a debloated
program’s execution against an input may not terminate, we used
a timeout of ten seconds.

4.3.3 Platform. We performed our evaluation on a machine run-
ning Ubuntu-18.04, with 260GB of RAM and 32 AMD-Opteron
1.4GHz processors. The machine time necessary to obtain all the
debloated programs for all experiments is over 284 hours (11 days).
It then took many extra hours for evaluating the generality of the
debloated programs.

4.4 RQ1: Comparison in terms of reduction,

correctness-based generality, and tradeoff

Table 2 shows the (average) c-generality (CGen), reduction (Red),
and tradeoff (Tradeoffs) scores for all the debloating approaches
considered. The columns in the table show the benchmark id (Bench-
mark), the approach (Appr), related-input-based c-generality (Rel-
CGen), all-input-based c-generality (AllCGen), statement-based size
reduction (SRed), memory-based size reduction (MRed), attack sur-
face reduction (ARed), and six types of tradeoff F-scores computed
based on all combinations of the c-generality and reduction scores.
For example, RelSF is computed based on RelCGen and SRed.

The table shows results for three sets of programs: the utilities
(Util), the large SIR programs (LSIR), and a reduced set of large SIR
programs (R-LSIR). The reason to have R-LSIR is that, for three LSIR
programs, bash, make, and vim, we detected errors in the tracing
phase of Razor’s debloating process.We therefore compared Razor
with other approaches on R-LSIR, which does not contain the three
programs for which Razor behaved incorrectly. For the R-LSIR
programs, we show the scores in parentheses.

For Razor and CovA, we experimented with different augmen-
tation thresholds to produce a range of debloated programs with
different reduction-generality tradeoffs. In the table, we show the
best performance of these tools by reporting, for each program,
thresholds that lead to the best tradeoffs, measured by the highest
F-scores (AllMF for Razor and AllSF for CovA). Note, however,
that Razor and CovA are both capable of producing debloated
programs with higher and lower c-generality and reduction scores
than what is presented in Table 2. We leave as future work the

automatic identification of the best threshold. Below we discuss the
comparison of the approaches.

4.4.1 Comparison of Chisel, Debop, and Cov. We first com-
pare Chisel and Debop, the two existing input-based approaches,
and the baseline Cov. According to Table 2, Chisel’s and Debop’s
c-generality scores are relatively low and are less than 0.6. These
results confirm that the two approaches are prone to producing
overfitting programs, which do not correctly handle many (related)
unseen inputs. As shown in the Tradeoffs columns of the table, their
size-based F-scores (RelSF, RelMF, AllSF, and AllMF ) are not higher
than those for Cov. This shows that Chisel and Debop are not
better than Cov in obtaining good tradeoffs between size reduction
and c-generality.

As we discussed in Section 3.1, Chisel is based on delta de-
bugging. In principle, delta debugging is more aggressive than a
coverage-based approach for code pruning. In practice, however,
Chisel pruned less code than Cov. This is mainly because its delta
debugging process is computationally expensive. Within the six-
hour time limit that we considered, Chisel was unable to prune
much unneeded code for large programs. Debop is based on sto-
chastic optimization and relies on a coverage-based approach to
produce a reduced program 𝑝𝑐 . However, because Debop does not
augment 𝑝𝑐 to increase c-generality; it rather only reduces 𝑝𝑐 with
the goal of achieving a better tradeoff by increasing size reduction.
This explains why Debop can almost always produce a debloated
program with a higher size reduction and lower c-generality than
Cov. Its size-based F-scores are often lower than, but very close to,
those of Cov.

For the utilities, Chisel and Debop removed more ROP gadgets
than Cov, which results in a slightly higher RelAF and AllAF scores.
This result implies that Cov, which completely preserves executed
statements, can produce programs retaining more gadgets that can
potentially be exploited for attacks. Approaches such as Chisel
and Debop, which delete single statements in the execution path,
are more effective at reducing gadgets. Another reason why Debop
eliminated more gadgets is that it explicitly uses gadget reduction
as one of its optimization objectives. For LSIR programs, Debop
also removed more ROP gadgets than Cov and obtained higher F-
scores. For these larger programs, Chisel’s gadget reduction ability
is considerably weaker, for the reasons explained above, which
leads to lower reduction and, ultimately, lower F-scores.

Existing approaches Chisel andDebop tend to produce debloated
programs with low c-generality. They also do not outperform
Cov in finding a better tradeoff between size reduction and c-
generality. Finally, Debop is more effective at reducing attack
surface.

4.4.2 Comparison of CovF, CovA, and others. In this section,
we focus on comparing CovF and CovA, the two augmentation-
based approacheswe developed, with other source-based approaches
to investigate their effectiveness. As described in Section 3, CovF
and CovA essentially augment 𝑝𝑐𝑜𝑣 , the debloated program pro-
duced by Cov, by adding to it code from the original program.
According to Table 2, CovF’s and CovA’s c-generality scores are
higher than those for Cov, which shows that their augmentation
approaches can result in better c-generality. In particular, CovA’s
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Table 2: Reduction, correctness-based generality, and tradeoff scores (▲: highest score for source-based approaches; ★: highest

score for all approaches).

Benchmark Appr

CGen Red Tradeoffs

RelCGen AllCGen SRed MRed ARed RelSF RelMF RelAF AllSF AllMF AllAF

Util

Chisel 0.55 0.43 0.71 0.65 0.36 0.59 0.57 0.41 0.51 0.49 0.36
Debop 0.54 0.40 ▲0.76 ▲0.67 ▲0.39 0.62 0.59 ▲0.43 0.51 0.49 ▲0.37
Cov 0.57 0.43 0.74 0.65 0.33 0.63 0.59 0.39 0.53 0.50 0.34
CovF 0.61 0.46 0.71 0.62 0.31 0.65 0.61 0.39 0.54 0.51 0.34
CovA ▲★0.73 ▲★0.60 0.65 0.57 0.26 ▲0.68 ▲0.63 0.38 ▲0.62 ▲★0.58 0.36
Razor 0.69 0.51 - ★0.70 ★0.51 - ★0.68 ★0.57 - ★0.58 ★0.49

LSIR (R-LSIR)

Chisel 0.59 (0.44) 0.57 (0.33) 0.26 (0.39) 0.28 (0.42) 0.13 (0.19) 0.26 (0.38) 0.27 (0.38) 0.09 (0.10) 0.23 (0.32) 0.24 (0.32) 0.07 (0.07)
Debop 0.49 (0.49) 0.40 (0.37) ▲0.65 (▲0.60) ▲0.56 (▲★0.54) ▲0.30 (▲0.26) 0.51 (0.48) 0.46 (0.44) ▲0.32 (▲0.29) 0.46 (0.42) 0.42 (0.39) ▲0.30 (▲0.27)
Cov 0.50 (0.50) 0.41 (0.38) 0.64 (▲0.60) 0.55 (0.53) 0.27 (0.23) 0.52 (0.49) 0.47 (0.46) 0.30 (0.28) 0.47 (0.43) 0.43 (0.40) 0.29 (0.26)
CovF 0.53 (0.54) 0.43 (0.41) 0.63 (0.58) 0.54 (0.52) 0.25 (0.19) 0.53 (0.51) 0.48 (0.47) 0.29 (0.25) 0.48 (0.44) 0.43 (0.41) 0.27 (0.23)
CovA ▲0.69 (▲0.73) ▲0.60 (▲0.63) 0.53 (0.44) 0.45 (0.39) 0.17 (0.10) ▲0.58 (▲0.54) ▲0.52 (▲0.50) 0.25 (0.18) ▲0.55 (▲0.51) ▲0.49 (▲0.47) 0.24 (0.17)
Razor - (★0.79) - (★0.73) - (-) - (0.52) - (★0.32) - (-) - (★0.59) - (★0.43) - (-) - (★0.56) - (★0.41)

c-generality scores are much higher than Cov’s scores—CovA pro-
duced programs that can correctly process 16-19% more testing
inputs. This confirms the effectiveness of CovA in generating de-
bloated programs that behave correctly for a larger set of unseen
inputs.CovA is also the approach achieving the highest c-generality
among all source-based approaches. CovF’s c-generality scores are
not as high as CovA’s, which is expected because CovF focuses
on robustness-related code for augmentation. Its strength lies in
improving r-generality, as we will discuss in Section 4.5.

By performing augmentation, CovF and CovA pruned less code
than Cov. Overall, their size-based F-scores are higher than those of
all the other source-based approaches, including Cov. This, along
with the results we will show in Section 4.5, indicates that CovA
and CovF can considerably improve program generality without
significantly affecting size reduction, thus achieving good debloat-
ing tradeoffs. Such tradeoffs are relevant for all the scenarios in
which debloated programs are expected to be robust and be able
to correctly handle inputs (especially feature-related inputs) other
than those used for debloating.

Although CovF’s and CovA’s size-based F-scores are higher
than those achieved by Cov, their attack-surface-based F-scores are
often lower. This is because Cov, on which the two approaches are
built, is not effective at reducing attack surface: its ARed scores are
0.33 for utilities and 0.27 for LSIR programs. When Cov’s reduction
score is low, that causes the reduction score for the augmentation
approaches based on Cov to be even lower, which ultimately results
in a low overall F-score. One possible way to address this issue is
to further improve the augmentation approach by adjusting its
aggressiveness based on Cov’s reduction ability, which is another
research direction we plan to investigate in future work.

CovF’s and CovA’s augmentation strategies can lead to good
debloating tradeoffs, improving program generality without
greatly increasing program size. These strategies are, however,
not amenable to situations in which attack surface reduction is
the main goal.

4.4.3 Comparison of Razor and source-based approaches.

Razor is the only binary-based approach among the ones we con-
sidered (i.e., the only approach that operates on binary, rather than
source code). As shown in Table 2, Razor obtained both high reduc-
tion and high c-generality scores—its size-based and attack-surface-
based F-scores are the highest for both benchmarks. The main
reasons for this result are that Razor (1) operates at the instruction
level and (2) performs augmentation to infer complementary code

not exercised by the given inputs. Because of (1), Razor’s search
space is larger than that of source-based approaches, which enables
Razor to find more and also better tradeoffs. This also makes a
comparison between Razor and source-based approaches somehow
unfair because Razor, by operating at the instruction level, can
remove additional, compiler-generated code. To better understand
this aspect, we used Razor’s coverage-based approach, which we
call RazorCov, to produce debloated programs with no augmenta-
tion. We found that, by pruning instructions rather than statements,
RazorCov produced debloated programs with smaller memory size
and attack surface than Cov, thus making more room for augmen-
tation. RazorCov’s memory-size-based reduction scores for Util
and R-LSIR programs are 0.77 and 0.69, and its attack-surface-based
reduction scores for these two benchmarks are 0.56 and 0.48. Al-
though the debloated programs have low c-generality (e.g., the
AllGen score is 0.25 for utilities), by inferring code for augmenta-
tion, Razor effectively improves such c-generality (from 0.25 to
0.51) while still achieving high reduction (0.7 for MRed). This again
confirms that code augmentation is beneficial for input-based de-
bloating. Despite its effectiveness in finding a good tradeoff between
reduction and c-generality, however, Razor is prone to producing
programs with robustness issues, as we will discuss in Section 4.5.

The binary-based approach Razor outperforms source-based
approaches in obtaining a better tradeoff between reduction and
correctness-based generality for debloating.

4.4.4 Comparison on small programs. The results for the small
SSIR programs show that Cov did not achieve high reduction scores
(e.g., 0.13 for SRed) and high F-scores (e.g., 0.22 for AllSF ). CovF
and CovA, which further augment the program produced by Cov,
achieved less reduction and no higher F-scores. This seems to imply
that source-based augmentation is not beneficial on small programs.
For small programs, Chisel and Debop pruned more code and
achieved higher F-scores, due to the small search space for these
programs. As before, Razor outperformed source-based approaches
in reducing memory size and attack surface and obtained higher
F-scores. Its AllMF is almost twice as high as Chisel’s score (the
highest one for source-based approaches).

For small programs, source-based augmentation is not beneficial
in improving the tradeoff between reduction and correctness-
based generality.
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4.5 RQ2: Comparison in terms of reduction,

robustness-based generality, and tradeoff

Table 3 presents, in the second column, the average r-generality
scores of all approaches. These scores are computed based on fuzzed
inputs produced by Radamsa. The table also shows three types of
reduction scores and the corresponding tradeoff scores. According
to our results, CovF achieves the highest r-generality. Its augmen-
tation is very effective and helps improve Cov’s r-generality from
0.57 to 0.98. Most importantly, CovF does not achieve a significant
r-generality improvement at the cost of considerably increasing
program size, which is supported by the fact that CovF’s reduction
scores are only slightly lower than those for Cov. Among all ap-
proaches, CovF achieves the highest size-based tradeoff scores (0.8
for SF and 0.74 for MF ). Its AF score is not the highest because a
coverage-based code pruning method is not effective at reducing
attack surfaces, as explained in Section 4.4.2.

The results also show that input-based approaches, which do not
account for the program behavior on unobserved inputs, produced
programs with low r-generality. This is because the inputs they
used for debloating only reflect the typical usage of the program and
do not contain invalid inputs used in less common cases. Without
considering such cases, a debloating approach may remove “defen-
sive” code and produce a less robust program. As an example, an
approach may delete an if-statement that checks whether a function
argument is a valid integer. Without this check, the program may
crash for a non-integer argument when parsing the argument with
atoi. Although CovA’s analysis-based augmentation may also help
improve r-generality, its augmentation is not targeted at finding
robustness-related code. CovA may therefore identify a non-trivial
amount of code for augmentation while still omitting the critical
code needed to avoid robustness issues.

According to Table 3, Razor produced debloated programs with
the lowest r-generality (0.39). We found that, by targeting binary
instructions when pruning, RazorCov (i.e., Razor with no aug-
mentation) produced a program with low r-generality (0.15), which
indicates considerable overfit to the debloating inputs. Although
Razor’s augmentation can help improve r-generality, this improve-
ment is limited becauseRazor, likeCovA, does not target robustness-
related code for augmentation. In fact, for most (80%) programs,
Razor’s augmentation excluded paths involving library calls (in
pursuit of good reduction-generality tradeoffs). This resulted in
excluding defensive checks, which often invoke library calls (e.g.,
printf and exit), for handling invalid cases.

We also used AFL [4] to test and evaluate the r-generality of the
debloated programs based on each debloating input previously se-
lected for fuzzing (see Section 4.2.2). Because AFL’s fuzzing process
is feedback-based, it generates different fuzzed inputs for different
programs. Therefore, we did not evaluate r-generality based on the
frequency of crashes or non-termination, as we did for Radamsa,
but rather (1) checked, for each debloated program, whether a crash
or non-termination ever occurred and (2) computed the ratio of
tested programs that terminated correctly. The results show that
CovF has the highest r-generality (0.87), followed by Chisel, whose
r-generality is 0.75, and the other approaches, whose scores are all
0.67. CovF is also the approach achieving the highest size-based

Table 3: Reduction, robustness-based generality, and trade-

off scores (▲: highest score for source-based approaches; ★:

highest score for all approaches).

Appr RGen

Red Tradeoffs

SRed MRed ARed SF MF AF

Chisel 0.61 0.60 0.57 0.30 0.61 0.59 0.41
Debop 0.60 ▲0.71 ▲0.63 ▲0.34 0.65 0.61 ▲★0.44
Cov 0.57 0.70 0.61 0.29 0.63 0.59 0.39
CovF ▲★0.98 0.66 0.59 0.27 ▲0.80 ▲★0.74 0.43
CovA 0.71 0.58 0.51 0.21 0.64 0.59 0.33
Razor 0.39 - ★0.64 ★0.44 - 0.49 0.42
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Figure 2: The average reduction, generality, and F-scores

achieved with different ratios of debloating inputs (n10: ten

inputs; p0.1-p0.3: 10%-30% inputs).

tradeoff scores: 0.76 for SF and 0.71 for MF. These results further
confirm CovF’s effectiveness.

We also tested all the small programs in SSIR with fuzzed inputs
produced by Radamsa and found that, for these programs, all ap-
proaches achieve high r-generality, with CovF’s score being the
highest (0.96) and Razor’s score being the lowest (0.88). Similar to
what we have shown in Section 4.4.4, the source-based augmenta-
tion strategies used by CovF and CovA tend to be ineffective for
small programs, for which only limited code reduction is possible.

By performing robustness-oriented augmentation, CovF pro-
duced debloated programs with the highest r-generality. Con-
versely, Razor is more prone to producing debloated programs
with robustness issues than other approaches.

4.6 RQ3: Debloating with different input

amounts

In this RQ, we investigated how the debloating approaches perform
using different amounts of inputs. We used the SIR benchmark
for this experiment, as we have a large number of inputs for these
programs. For each program 𝑝 , we created three sets of inputs, 𝐼1, 𝐼2,
and 𝐼3, consisting of 10%, 20%, and 30% of the inputs in 𝐼 , randomly
selected and such that 𝐼0 ⊂ 𝐼1 ⊂ 𝐼2 ⊂ 𝐼3. We also considered 𝐼0, the
set of 10 inputs from 𝐼 that we used to investigate the previous RQs.
We applied each approach to debloat 𝑝 based on the four input sets
and evaluated the c-generality of the resulting programs based on
inputs not used for debloating. We measured r-generality using the
set of fuzzed inputs previously created by Radamsa.

Figure 2 presents the reduction (mred and ared), generality (all-
cgen, relcgen, and rgen), and tradeoff (from mf-allcgen to af-rgen)
as average scores for all the approaches considered. These results
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show that, when the input size increases, the reduction scores tend
to drop, and the generality scores tend to raise. When the input size
increases from 10 inputs to 10% of the inputs in 𝐼 , the debloating ap-
proaches produced programs with high c-generality scores: 0.83 for
allcgen and 0.9 for relcgen. Because c-generality increases by a very
large margin, the F-scores mf-allcgen and mf-relcgen also increase.
However, when the input size further increases from 10% to 30%,
the improvement of allcgen is more limited, and the relcgen score
even slightly drops (which is possible, as the number of related
testing inputs used for evaluating relcgen increases). In these cases,
because the reduction scores drop by a non-trivial amount (e.g.,
from 0.44 to 0.37 for mred), the overall c-generality-based F-scores
slightly decrease.

Unlike c-generality, r-generality (rgen) does not considerably
increase when the input size increases from 10 to 10%. This shows
that the inputs do not cover less common cases that would help
increase the robustness of the debloated programs. Because the
increase of r-generality does not outweigh the decrease of code
reduction, the r-generality-based F-scores drop. However, when
inputs increase from 10% to 30%, the rgen score increases by a large
margin, from 0.55 to 0.72, which helps improve the corresponding
F-scores. Note that the findings of this section also hold for the
statement-based size reduction and the F-scores, which we do not
present for all source-based approaches due to space constraints.

When the number of inputs used for debloating increases, all
approaches tend to achieve higher generality. The reduction-
generality tradeoff, however, tends to decrease unless the set of
inputs before the increase is small.

4.7 RQ4: Efficiency of the approaches

We compared all the approaches considered in terms of debloating
time, that is, the time an approach takes to produce a debloated
program based on a set of inputs. Among all approaches, Chisel
and Debop are the most time consuming and need 4.7 and 5.4
hours on average to produce a debloated program. Razor, Cov, and
CovA are significantly more efficient and need only 0.2, 0.4, and
0.6 minutes for debloating, on average. By performing coverage-
based reduction, these approaches do not need to re-execute the
same inputs again and again, as Chisel and Debop do, and their
augmentation is also efficient. CovF’s augmentation is slightly
more expensive, as it must perform fuzzing. As a consequence, its
debloating time is 3.3 minutes on average.

Cov, Razor, CovF, and CovA take at most a few minutes to
produce a debloated program. Chisel andDebop are considerably
more expensive, in the order of a few hours.

4.8 Discussion

One of our main findings is that existing input-based approaches
tend to produce debloated programs that are overfitted to the in-
puts used for debloating and thus have low generality. The two
approaches we proposed provide source-based solutions that help
improve program generality—both correctness- and robustness-
based—without significantly increasing the size of the debloated
programs, thus achieving good tradeoffs. The strength of these

approaches lies in the augmentation strategies used for inferring
which complementary code (i.e., code not exercised by the given
inputs) to preserve for generality improvement. Although useful,
however, code augmentation should be performed with caution. As
we have previously discussed, when the program being debloated
is small, or the number of inputs used for debloating is large, aug-
mentation may negatively affect the reduction-generality tradeoff.
Based on these observations, we believe it would be interesting
to investigate how to dynamically adjust the aggressiveness of
the augmentation phase based on different factors, including the
program size and the inputs used (e.g., their number and coverage).

Our results show that Razor, by performing binary-based de-
bloating, can achieve a better tradeoff between reduction and c-
generality than the source-based approaches. However, Razor’s
instruction-based code pruning can also result in debloated pro-
grams with low r-generality that require augmentation. Therefore,
despite its focus on finding a good tradeoff between reduction and
c-generality, a binary-based approach like Razor is not a straight-
forward replacement for source-based approaches. Furthermore, it
may be possible to leverage source-level information (e.g., variable
names and types) to improve debloating.

Our results, which highlight the strengths and weaknesses of the
various approaches, can provide guidelines to help users suitably
choose a debloating approach. Razor is effective in achieving a
good tradeoff between reduction and c-generality but can produce
debloated programs with robustness issues, which exhibit crash or
do not terminate when executed on unobserved inputs. Therefore, if
robustness is important, and program source code is available, users
should consider using source-based approaches instead. Among
those, Cov is a simple approach that produces reasonable results.
CovF should be preferred in cases in which robustness is a priority.
Conversely, if the main objective is high correctness-based gen-
erality, users should consider the use of CovA. Chisel is a good
choice if size reduction is of particular interest and efficiency is
not a concern, as its debloating process can take several hours to
finish, especially for large programs. Finally, if the main reason for
debloating is attack surface reduction, Debop should be used.

In general, it is challenging to design a one-size-fits-all input-
based debloating approach. Our research demonstrates the impor-
tance of accounting for both reduction and generality when de-
bloating and provides solutions for improving generality without
significantly decreasing reduction. One challenge, in this context, is
that it is difficult to measure actual program generality and identify
ways to improve it at debloating time, when the inputs that will be
provided to the debloated program are unknown. Another interest-
ing venue for future work would be to investigate techniques for
estimating generality that can guide input-based debloating.

4.9 Threats to Validity

Like all evaluations, there can be internal and external threats to the
validity of our results. To account for internal threats to validity, we
used the implementation of Chisel, Debop, and Razor provided by
the authors and carefully tested the approaches we implemented.
As for external threats to validity, our evaluation is based on a set
of 10 Unix utilities and 15 SIR programs, for which we gathered
different sets of inputs. Additional empirical studies are needed to
assess whether our results generalize to other programs and inputs.
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5 RELATEDWORK

Debloating. Existing debloating techniques that tackle the problem
of eliminating a program’s unneeded features often use a set of
inputs (as a usage profile) for feature specification [30, 33, 49, 58,
67, 68, 70]. These techniques tend to produce programs that are
overfitted to the inputs used and are not properly evaluated in terms
of the generality of such programs and the reduction-generality
tradeoff involved. To fill this gap, we conducted a study aiming to
investigate the effectiveness of existing input-based approaches,
along with a baseline and two augmentation-based approaches
we developed, in terms of reduction, generality, and their tradeoff.
Specifically, we selected three state-of-the-art approaches that work
for C programs: Chisel, Debop, and Razor.

In addition to input-based approaches, there are approaches
that use feature specifications based on manual annotations [14],
human-developed domain sampling [71], configuration data [64],
and surveys [6]. Yet other approaches target specific types of appli-
cations (e.g., the Chromium web browsers [50], Android apps [69])
and leverage the unique characteristics of these applications for fea-
ture identification. Compared to the input-based approaches, these
approaches have more limited usability, as they require non-trivial
program understanding for feature identification and/or are only
applicable to specific types of programs.

Another class of related approaches are those that, instead of
trying to remove a program’s unneeded features, rely on static
analysis [37, 39, 57] to eliminate dead/unused code, trim binaries
and libraries [5, 28, 48, 52], reduce the size of applications in a
given domain (e.g., containers [54], web applications [9], server sys-
tems [18], Android apps [35, 36], Java applications [15, 45, 62], and
OS kernels [40]), or focus on specific tasks (e.g., safety checking [26]
and API specialization [47]).

Cimplifier [54, 55], in particular, which targets container debloat-
ing, uses a technique that is similar to the one used by CovF to
obtain additional inputs. Unlike CovF, however, which generates
additional inputs through fuzzing to improve program robustness,
Cimplifier performs symbolic execution to obtain additional inputs
for improving the identification of required system resources.

Our study is also broadly related to other studies that focus on
bloat analysis [13, 51], bloat detection [11, 74, 75], and identification
of unnecessary code [31] and dependencies [66].

Branch/Path prediction. The augmentations performed by
CovF and CovA aim to predict the “right” code to be preserved
in a debloated program. In this sense, our work is related to static
branch/path prediction, which aims to identify “hot” branches and
paths based on heuristics [10] and machine learning [16, 17]. Unlike
these approaches, the predictions performed by CovF and CovA are
based on fuzzing and a combination of static and dynamic analyses.
Moreover, because the branch/path prediction approaches are not
developed in a debloating context, they do not need to consider the
tradeoff between reduction and generality.

Feature identification and location. The debloating approaches
investigated in our study rely on a set of inputs to identify desired
features and locate code corresponding to these features. They are
therefore related to existing approaches for feature identification
(e.g., [7, 8, 25]) and feature location(e.g., [23, 60]), which are mainly
designed to ease program understanding. Although intended for a

different purpose, we believe that some of these approaches may
be leveraged to improve debloating effectiveness.

Program repair. Similar to debloating approaches, which rely
on a set of inputs for feature identification, program repair ap-
proaches [41] rely on a set of test cases to specify the correct behav-
ior of a program. These approaches can therefore produce repaired
programs that are overfitted to the test cases considered and may
not correctly fix the bug at hand [65]. Techniques for mitigating
this problem include generating new test cases (e.g., [72, 73]), pri-
oritizing correct patches based on heuristics (e.g., [43]) and the use
of probabilistic models (e.g., [44, 61]).

6 CONCLUSION AND FUTUREWORK

Previous research on program debloating has mostly focused on
program reduction and neglected the generality of the reduced pro-
grams, that is, their ability to handle inputs that were not considered
during debloating. Similarly, existing research has mostly ignored
the important tradeoffs between program generality and program
reduction. To fill this gap, we performed a study in which we (1)
applied three state-of-the-art debloating approaches and a baseline
technique to a set of 25 programs and different sets of inputs for
these programs and (2) systematically assessed their performance
in terms of program reduction, (different kinds of) generality, and
their corresponding tradeoffs.

Motivated by our results and findings, which showed that the
techniques considered could indeed produce programs that are
overfitted to the inputs used and have low generality, we developed
two novel augmentation-based approaches, CovF and CovA, and
showed that they can improve generality without significantly
affecting size reduction, and thus obtain good tradeoffs between
these two important measures.

Our results also show that different debloating approaches have
different strengths and weaknesses. We also provided guidelines
that can help users choose the most suitable debloating approach
based on their specific needs and context. Finally, our findings can
also guide future research in input-based debloating.

Specifically, in future work, we will investigate ways to dynam-
ically adjust the augmentation aggressiveness based on program
size, input coverage, and other possible relevant factors. We will
also extend our evaluation by including more programs, consid-
ering additional fuzzing approaches for robustness testing, and
performing a user study to assess the feasibility of using debloated
programs in a real-world scenario. Finally, we will investigate to
what extent and how debloating is performed in industry. We also
mentioned additional venues for future work throughout the paper.
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