
Robustifying Debug Information Updates in LLVM via

Control-Flow Conformance Analysis

SHAN HUANG, JINGJING LIANG, and TING SU
∗
, Shanghai Key Laboratory of Trustworthy

Computing, East China Normal University, China
QIRUN ZHANG, Georgia Institute of Technology, USA

Optimizing compilers, such as LLVM, generate debug information in machine code to aid debugging. This
information is particularly important when debugging optimized code, as modern software is often compiled
with optimization enabled. However, properly updating debug information to reflect code transformations
during optimization is a complex task that often relies on manual effort. This complexity makes the process
prone to errors, which can lead to incorrect or lost debug information. Finding and fixing potential debug
information update errors is vital to maintaining the accuracy and reliability of the overall debugging process.
To our knowledge, no existing techniques can rectify debug information update errors in LLVM. While
black-box testing approaches can find such bugs, they can neither pinpoint the root causes nor suggest fixes.

To fill the gap, we propose the first technique to robustify debug information updates in LLVM. In particular,
our robustification approach can find and fix incorrect debug location updates. Central to our approach is
the observation that the debug locations in the original and optimized programs must satisfy a conformance
relation. The relation ensures that LLVM optimizations do not introduce extraneous debug location information
on the control-flow paths of the optimized programs. We introduce control-flow conformance analysis, a novel
approach that determines the reference updates ensuring the conformance relation by observing the execution
of LLVM optimization passes and analyzing the debug locations in the control-flow graphs of programs under
optimization. The determined reference updates are then used to check developer-written updates in LLVM.
When discrepancies arise, the reference updates serve as the update skeletons to guide the fixing.

We realized our approach as a tool named MetaLoc, which determines proper debug location updates for
LLVM optimizations. More importantly, with MetaLoc, we have reported and patched 46 previously unknown
update errors in LLVM. All the patches, along with 22 new regression tests, have been merged into the LLVM
codebase, effectively improving the accuracy and reliability of debug information in all programs optimized
by LLVM. Furthermore, our approach uncovered and led to corrections in two issues within LLVM’s official
documentation on debug information updates.

CCS Concepts: • Software and its engineering→ Compilers; Software testing and debugging.

Additional Key Words and Phrases: Compiler Optimizations, Debug Information

ACM Reference Format:

Shan Huang, Jingjing Liang, Ting Su, and Qirun Zhang. 2025. Robustifying Debug Information Updates in
LLVM via Control-Flow Conformance Analysis. Proc. ACM Program. Lang. 9, PLDI, Article 168 (June 2025),
23 pages. https://doi.org/10.1145/3729267

∗Ting Su is the corresponding author.

Authors’ Contact Information: Shan Huang, shan.huang@stu.ecnu.edu.cn; Jingjing Liang, jjliang@stu.ecnu.edu.cn; Ting
Su, tsu@stu.ecnu.edu.cn, Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai,
China; Qirun Zhang, qrzhang@gatech.edu, Georgia Institute of Technology, Atlanta, USA.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/6-ART168
https://doi.org/10.1145/3729267

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 168. Publication date: June 2025.

HTTPS://ORCID.ORG/0009-0008-2856-5851
HTTPS://ORCID.ORG/0009-0001-7905-5690
HTTPS://ORCID.ORG/0000-0003-1628-9796
HTTPS://ORCID.ORG/0000-0001-5367-9377
https://doi.org/10.1145/3729267
https://orcid.org/0009-0008-2856-5851
https://orcid.org/0009-0001-7905-5690
https://orcid.org/0000-0003-1628-9796
https://orcid.org/0000-0003-1628-9796
https://orcid.org/0000-0001-5367-9377
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3729267

168:2 Shan Huang, Jingjing Liang, Ting Su, and Qirun Zhang

1 Introduction

Debugging is an essential activity in software development. To aid debugging, modern compilers
generate debug information [Aggarwal and Kumar 2002] through the “-g” flag to establish a mapping
between the source code and machine code. This information enables users to examine the source-
level states of the program when diagnosing software failures. Debug information becomes even
more important when debugging optimized code [Adl-Tabatabai and Gross 1996; Copperman
1994] because modern software is usually built with optimization enabled. Indeed, many widely
used software systems (e.g., Linux distributions [Gentoo Authors 2024], Mozilla Firefox1 and the
Linux software produced by GNU autotools [Calcote 2010]) depend on such debug information to
diagnose failures in their optimized binaries.
One important kind of debug information is debug location information (in short as debug loca-

tions) [LLVM Project 2024a]. Debug locations maintain the mapping between the line information
of the low-level instructions in machine code and the statements in source code. Such informa-
tion is critical for techniques like interactive debuggers (e.g., GDB [GDB Developers 2024] and
LLDB [The LLDB Team 2024]), sanitizers (e.g., crash logs of AddressSanitizer [Serebryany et al.
2012]) and profile-guided optimization (e.g., SamplePGO [Novillo 2014]). However, debug locations
could become invalid due to various code transformations that rearrange, replace, or eliminate the
instructions and statements. As a result, correctly maintaining debug location information is the
key to ensuring the accuracy and reliability of debug information in optimized code.
Debug Location Update. Maintaining debug locations in the presence of compiler optimization is
non-trivial. Our work focuses on addressing this problem in LLVM. A debug location update in LLVM
involves three components: (1) the destination instruction, which is a single instruction requiring an
updated debug location; (2) source instructions, whose debug locations serve as references for the
update; and (3) the appropriate update operation, which is either Preserve, Merge, and Drop. These
optimizations are defined in existing LLVM guidance [Kumar 2020]. When implementing LLVM
optimization passes, developers must manually specify these components to ensure correct debug
location updates. However, the absence of formal specifications [Copperman 1994; Hennessy 1982]
for maintaining debug information makes this process error-prone. Additionally, LLVM has limited
regression tests to validate these manually written updates. Consequently, incorrect debug location
updates may occur, leading to bugs such as lost or misrepresented debug information. Finding and
fixing these issues is crucial for ensuring reliable debugging support in LLVM.

The best-known approach to improving debug information maintenance is through testing. Prior
black-box testing techniques [Assaiante et al. 2023; Di Luna et al. 2021; Li et al. 2020] can only find
debug information bugs (Figure 1a) by comparing the optimized program 𝑃 ′ with the unoptimized
counterpart 𝑃 . Intuitively, testing could not pinpoint location update errors in optimization imple-
mentations, let alone fix them. Indeed, many reported bugs are still open.2 In an issue report of
debug information bug for LLVM, one developer comments, “This is sort of a known problem, and
no-one has been brave enough to really address it yet, but there are some other tickets floating around
about this” [LLVM Developers 2023].
From Testing to Robustification. To fill this gap, this paper proposes a new robustification
technique to improve the robustness of debug location updates in LLVM. In particular, robustification
refers to the process of finding and fixing errors in debug location updates. Unlike traditional
testing techniques that compare only the original program 𝑃 and its optimized counterpart 𝑃 ′, our
robustification approach analyzes the internal behavior of LLVM optimization passes. As shown in
Figure 1b, our approach inspects LLVM IR manipulations performed during the optimization of 𝑃

1The Windows release of Firefox is compiled with “-Z7 -O2” that enables the CodeView debug information in object files.
2https://github.com/llvm/llvm-project/issues?q=is%3Aissue+label%3Adebuginfo+is%3Aopen

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 168. Publication date: June 2025.

https://github.com/llvm/llvm-project/issues?q=is%3Aissue+label%3Adebuginfo+is%3Aopen

Robustifying Debug Information Updates in LLVM via Control-Flow Conformance Analysis 168:3

Unoptimized
Program 𝑃

Optimized
Program 𝑃’

Black-box Testing

Debug Information
Bugs

(a) Black-box testing techniques.

Unoptimized
Program 𝑃

Optimized
Program 𝑃’LLVM optimization

Robustification via
Control-Flow Conformance Analysis

Debug Location
Update Errors Patch Skeletons

(b) Our robustification technique.

Fig. 1. Illustration of the difference between the black-box testing and robustification.

into 𝑃 ′. By leveraging internal knowledge of LLVM optimizations, our robustification approach
can obtain the correct debug location updates and pinpoint errors by comparing them with these
developer-written updates.
Control-flow Conformance Analysis. Central to our robustification approach is determining the
“correct updates” in LLVM optimization passes, which is particularly challenging due to the lack of
formal specifications. Our key observation is that debug locations in the optimized program 𝑃 ′ and
its unoptimized counterpart 𝑃 should satisfy a conformance relation. Specifically, this relation refers
to the fact that no “extra” debug location information should be introduced in any optimized path
in 𝑃 ′ beyond what exists in its original paths in 𝑃 .
Ensuring the conformance relation presents unique challenges. First, we need to identify the

source and destination instructions in the input program 𝑃 and the optimized counterpart 𝑃 ′,
respectively. Second, we need to determine the proper debug location update operations to en-
sure the conformance relation between 𝑃 and 𝑃 ′, based on the identified source and destination
instructions. To address both challenges, we introduce control-flow conformance analysis. The key
enabling insight is to leverage the LLVM Instruction APIs used in LLVM optimization passes when
optimizing the input program 𝑃 . To this end, we identify four types of instruction manipulations
(i.e., Create, Clone, Remove, and Replace), instrument and monitor the corresponding LLVM APIs
such as Instruction::clone and Instruction::MoveBefore. When optimizing 𝑃 , these LLVM APIs
essentially associate the original instructions in 𝑃 with the optimized instructions in 𝑃 ′, enabling us
to identify the corresponding source and destination instructions. Using this information, we collect
the debug location sets Lsrc (from 𝑃) and Ldst (from 𝑃 ′), based on their respective control-flow
graphs. With Lsrc and Ldst , our control-flow conformance analysis then applies a set of deter-
mination rules to determine the proper update operations that ensure the conformance relation
between the optimized program 𝑃 ′ and its unoptimized counterpart 𝑃 . Finally, we compare the
updates obtained by control-flow conformance analysis with the developer-written updates. Any
discrepancies indicate potential errors in the debug location updates. In such cases, the obtained
update serves as a patch skeleton to guide the correction process.
We have realized our approach as a tool named MetaLoc and applied it to the latest version

of LLVM. MetaLoc has found 46 previously unknown debug location update errors in 18 LLVM
optimization passes. More importantly, unlike existing techniques, we have successfully provided
the patches to these 46 update errors based on the debug location updates determined by MetaLoc.
All these patches have been accepted and landed in LLVM’s codebase. Many of the fixed update
errors were latent and affected a wide range of LLVM major versions (from LLVM 3 to 17). Fixing
them has significantly improved the accuracy and reliability of debug locations in any program
optimized by LLVM. MetaLoc has found no false positives during robustification, and our results
are appreciated by LLVM developers. Additionally, informed by our control-flow conformance
analysis, we have also found and patched two issues in LLVM documentation on updating debug
information [Kumar 2020], which otherwise mislead compiler developers.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 168. Publication date: June 2025.

168:4 Shan Huang, Jingjing Liang, Ting Su, and Qirun Zhang

Contributions. This paper has made the following contributions:

• At the conceptual level, we propose the first technique to robustify debug location updates in
LLVM, which determines reference updates for finding and fixing debug location update errors
in LLVM optimization implementations.
• At the technical level, we introduce control-flow conformance analysis, a novel approach to
determining correct debug location updates that ensure the conformance relation by monitoring
four kinds of instruction manipulations when running LLVM optimization implementations
and analyzing the debug locations based on the control-flow graphs of the programs under
optimization.
• At the empirical level, we implement our approach as a tool named MetaLoc. The evaluation
result shows the high precision of the updates determined by MetaLoc (detailed in Section 5.2).
Moreover, with MetaLoc, we have found and fixed 46 previously unknown update errors in the
latest version of LLVM (detailed in Section 5.3). All patches, along with 22 new regression tests,
have been accepted and merged into LLVM’s main trunk. Additionally, we have uncovered and
patched two issues in LLVM’s official documentation on updating debug information.

The paper is structured as follows. Section 2 introduces the maintenance of the debug location in
LLVM and motivates our work through a concrete example. Then, we give details of the robustifica-
tion approach in Section 3. Section 4 and Section 5 describe our implementation and experimental
results, respectively. Finally, Section 6 surveys related work, and Section 7 concludes.

2 Background and Motivating Example

This section gives some background on LLVM’s debug location maintenance (Section 2.1) and
illustrates our approach with a real debug location update error in LLVM (Section 2.2).

2.1 Debug Location and Its Updates in LLVM

Debug Location. In optimizing compilers, debug location establishes the mapping between the
source code and the compiled (or optimized) code. Specifically, in LLVM, debug location is main-
tained as metadata attached to LLVM IR instructions [LLVM Project 2024a]. It is represented in
the form of a triplet (𝑙, 𝑐, 𝑧), where 𝑙 , 𝑐 , and 𝑧 denote the line number, the column number, and the
scope (e.g., the true branch of an if statement) of the corresponding source code, respectively. In
this way, debug location maps the LLVM IR instruction to the corresponding source code. The code
below shows an example LLVM IR instruction %sub (line 1), whose debug location is specified by
the metadata tag “!dbg !30”. This tag refers to the debug location (line 2), which denotes that %sub
corresponds to line 6, column 17, and scope “!20” in the source code.

1 %sub = sub %a, %mul, !dbg !30

2 !30 = !DILocation(line: 6, column: 17, scope: !20)

Debug Location Updates. LLVM optimization passes perform various code transformations
that rearrange, replace, or eliminate IR instructions. To ensure the accuracy of debug location
mapping, LLVM developers need to manually update debug locations in LLVM optimization
passes [Kumar 2020]. Specifically, let 𝑃 and 𝑃 ′ be the unoptimized program and the optimized
counterpart, respectively, w.r.t. an optimization 𝑂 . A debug location update in 𝑂 consists of three
elements: (1) the update destination, i.e., the destination instruction (in 𝑃 ′) whose debug location
needs to be updated, (2) the update sources, i.e., the source instruction(s) (in 𝑃) whose debug locations
are used for the update, and (3) the update operation: Preserve, Merge, or Drop [Kumar 2020]. We
formally define the semantics of these three update operations as follows.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 168. Publication date: June 2025.

Robustifying Debug Information Updates in LLVM via Control-Flow Conformance Analysis 168:5

• Preserve. Let 𝑠′ and 𝑠 be the destination and source instructions in 𝑃 ′ and 𝑃 , respectively.
Preserve assigns the debug location of 𝑠 to that of 𝑠′.
• Merge. Let 𝑠′ and 𝑠1, ..., 𝑠𝑛 (𝑛 ≥ 1) be the destination and source instructions in 𝑃 ′ and 𝑃 ,
respectively. Merge assigns the merged debug location of 𝑠1, . . . , 𝑠𝑛 to that of 𝑠′.3
• Drop. Let 𝑠′ be the destination instruction in 𝑃 ′. Drop removes the debug location of 𝑠′.

Debug Location Update Errors. Both incorrectly specified destination and source instructions
and incorrect update operations can lead to debug location update errors. For example, retain-
ing debug locations that should be discarded leads to incorrect (or misleading) debug locations,
and discarding debug locations that should be retained leads to lost debug locations. The LLVM
documentation [Kumar 2020] explains that “[The Preserve operation] preserves the ability to set
breakpoints on source locations corresponding to the instructions they touch. Debugging, crash logs,
and SamplePGO accuracy would be severely impacted if that ability were lost,” and “The purpose of
Drop is to prevent erratic or misleading single-stepping behavior in situations in which an instruction
has no clear, unambiguous relationship to a source location.”

2.2 A Real Debug Location Update Error in LLVM

Consider the C program in Figure 2a, the function recursion takes the parameter a and invokes
recursive calls at lines 5 and 7. We can see that when function recursion is called by passing the
argument value 2 (line 14, Figure 2a), the recursive call at line 7 will be executed. Note that the
recursion call at line 5 is not reachable. However, when this C program is optimized by LLVM
optimization pass TailRecursionElimination, the debug location becomes incorrect. For example,
if we use LLDB to single-step the optimized program, LLDB will stop at line 5 (Figure 2b), which
is misleading. Such incorrect debug location information could severely impact debugging, crash
logs, and profiling-based optimization.
Root cause. The preceding incorrect debug location bug is caused by a real debug location
update error (fixed by us with PR 95742) in the optimization pass TailRecursionElimination.
Figure 2e shows the buggy code snippet of TailRecursionElimination which contains the debug
location update error. Figure 2c and Figure 2d show the LLVM IR instructions of the function
recursion before and after the optimization, respectively. The two blocks if.then2 and if.else in
Figure 2c and Figure 2d correspond to the true and false branches of the C program (Figure 2a),
respectively. We can see that the debug locations in Figure 2c (before the optimization) are correct,
which accurately map the instructions to the source code (Figure 2a). For example, line 6 in
Figure 2c (highlighted) maps to line 5 in Figure 2a. In Figure 2e, this optimization clones the
IR instruction %add (denoted by variable AccRecInstr at line 3) in the block if.then2 (Figure 2c)
to create a new instruction %accumulator.ret.tr (recorded by variable AccRecInstrNew, lines 3-
6). This new instruction %accumulator.ret.tr is later inserted before the return instruction ret

i32 %accumulator.ret.tr (recorded by variable RI, line 7) in the block if.else (Figure 2d). Note
that the instructions %add and %accumulator.ret.tr are respectively highlighted in Figure 2c and
Figure 2d. However, the optimization pass erroneously preserves the debug location of %add to
%accumulator.ret.tr. As a result, when the new instruction %accumulator.ret.tr is executed, its
debug location misleadingly informs the user that the execution reaches line 5 (i.e., a dead branch).
Our Approach. We instrument the code of TailRecursionElimination by monitoring four kinds
of instruction manipulations like clone (line 3 in Figure 2e). In this way, it can identify that the
destination and source instructions are denoted by the variables AccRetInstrNew and AccRecInstr,

3Let (𝑙1, 𝑐1, 𝑧1), (𝑙2, 𝑐2, 𝑧2), . . . , (𝑙𝑛, 𝑐𝑛, 𝑧𝑛) be debug locations and (𝑙, 𝑐, 𝑧) be the merged debug location. In LLVM’s imple-
mentation, 𝑙 = 𝑙1 if 𝑙1 = 𝑙2 = . . . = 𝑙𝑛 otherwise 𝑙 = 0. The same principle applies to 𝑐 as well. The merged scope 𝑧 is the
intersection of 𝑧1, 𝑧2, . . . , 𝑧𝑛 .

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 168. Publication date: June 2025.

168:6 Shan Huang, Jingjing Liang, Ting Su, and Qirun Zhang

int recursion(int a) {
if (a == 2) {

int sub = a – 1;
if (a & 1) { // Dead branch

return recursion(sub) + 1;
} else { // Live branch

return recursion(sub) * 2;
}

}
return 0;

}

int main() {
recursion(2);

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

(a) The C program triggering

the optimization pass TailRe-

cursionElimination.

define dso_local i32 @recursion(i32 noundef %a) !dbg !10 {
...

if.then2:
%call = call i32 @recursion(i32 noundef %sub1), !dbg !27
%add = add nsw i32 %call, 1, !dbg !29
br label %return, !dbg !30

if.else:
%call3 = call i32 @recursion(i32 noundef %sub1), !dbg !31
%mul = mul nsw i32 %call3, 2, !dbg !33
br label %return, !dbg !34

...
}

!27 = !DILocation(line: 5, column: 20, scope: ..)
!29 = !DILocation(line: 5, column: 35, scope: ..)
!30 = !DILocation(line: 5, column: 13, scope: ..)
!31 = !DILocation(line: 7, column: 20, scope: ..)
!33 = !DILocation(line: 7, column: 35, scope: ..)
!34 = !DILocation(line: 7, column: 13, scope: ..)

entry

if.else

if.then

if.then2

if.end

return

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

Runtime execution path
aa Source instruction

(c) The LLVM IR snippet of the unoptimized function recursion and its CFG.

(lldb) s
Process 28102 stopped
* Thread #1, name = ‘a.out’,

stop reason = step in
frame #0: a.out ` recursion(a=2)
at main.c:5:38
2 if (a == 2) {
3 int sub = a – 1;
4 if (a & 1) {

-> 5 return recursion(sub) + 1;
6 } else {
7 return recursion(sub) * 2;
8 }

(lldb) v a
(int) a = 2

(b) When debugging, LLDB

stops at line 5, the dead

branch in the C program.

define dso_local i32 @recursion(i32 noundef %a) !dbg !10 {
...

if.then2:
%add = add nsw i32 %accumulator.tr, 1, !dbg !27
br label %tailrecurse, !dbg !29

if.else:
%call3 = call i32 @recursion(i32 noundef %sub1), !dbg !30
%mul = mul nsw i32 %call3, 2, !dbg !32
%accumulator.ret.tr = add nsw i32 %accumulator.tr, %mul, !dbg !27
ret i32 %accumulator.ret.tr, !dbg !33

...
}

!27 = !DILocation(line: 5, column: 35, scope: ..)
!29 = !DILocation(line: 5, column: 20, scope: ..)
!30 = !DILocation(line: 7, column: 20, scope: ..)
!32 = !DILocation(line: 7, column: 35, scope: ..)
!33 = !DILocation(line: 11, column: 1, scope: ..)

tailrecurse

if.else

if.then

if.then2

if.end

return

entry1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Runtime execution path
aa Destination instruction

(d) The LLVM IR snippet of the optimized function recursion and its CFG.

void TailRecursionEliminator::cleanupAndFinalize() {
...
Instruction *AccRecInstrNew = AccRecInstr->clone();
AccRecInstrNew->setName("accumulator.ret.tr");
AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN,

RI->getOperand(0));
AccRecInstrNew->insertBefore(RI);
// Update Skeleton: Line 781 Drop(AccResInstrNew)
AccRecInstrNew->dropLocation(); // Patch code
RI->setOperand(0, AccRecInstrNew);
...

}

1
2
3
4
5
6
7
8
9 +

10
11
12

(e) The debug location update error in optimization pass TailRecursionElimination in LLVM. The error leads

to incorrect debug locations in optimized programs. The comment in green shows the generated update

skeleton by MetaLoc and the code in gray is the concretized patch to the error.

Fig. 2. A real debug location update error in the LLVM optimization pass TailRecursionElimination.

respectively. Later, our approach runs the optimization pass against the input C program. In this
way, it can identify that AccRetInstrNew records the destination instruction %accumulator.ret.tr

in the block if.else in Figure 2d, and AccRecInstr records the source instruction %add in the block
if.then2 in Figure 2c. Via performing the control-flow conformance analysis on the source and
destination instructions based on the control-flow graphs of 𝑃 and 𝑃 ′ (i.e., comparing Lsrc and Ldst ,
our approach determines that Drop is the appropriate update operation to ensure the conformance
relation. Thus, the determined debug location update is performing Drop on AccRetInstrNew. By
comparing Drop to Preserve, our approach thus finds this update error and generates the update
skeleton at line 8 in Figure 2e. Line 9 shows the accepted fixing patch to drop the debug location of
AccRetInstrNew.
Limitations of Existing Techniques. Prior work uses black-box testing techniques [Di Luna et al.
2021] to find debug location bugs. It (1) generates random (closed) programs like the C program in

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 168. Publication date: June 2025.

Robustifying Debug Information Updates in LLVM via Control-Flow Conformance Analysis 168:7

LLVM Optimization Pass

Constructed Debug Location
Updates

Instrumented Pass LLVM IR Program 𝑃 The Optimized
Program 𝑃′

Destination and Source
Instructions 𝑠!"#, 𝑠"$%

The CFG with Debug
Locations of 𝑃

The CFG with Debug
Locations of 𝑃’

Control-Flow Conformance AnalysisUpdate Robustification

Update Operation 𝑜𝑝

❸ identify

❺
determine

❷ obtain ❹ obtain

❶
instrument

❻
output

❼ find and fix the update errors

Fig. 3. Overview of our approach

Table 1. Four types of instruction manipulations capturing source and destination instructions. “DI” and “SI”

denote destination and source instructions, respectively. “—” means no corresponding instruction identified.

Manipulation Notation Semantics DI SI

Create ⟨Create, 𝑠⟩ Create a new instruction 𝑠 𝑠 —
Clone ⟨Clone, 𝑠new, 𝑠old⟩ Create a new instruction 𝑠new by cloning an existing instruction 𝑠old 𝑠new 𝑠old
Move ⟨Move, 𝑠to, 𝑠from⟩ Move an instruction 𝑠 from the position 𝑝from to the position 𝑝to 𝑠to 𝑠from

Replace ⟨Replace, 𝑠to, 𝑠from⟩ Replace all uses of 𝑠from with 𝑠to — 𝑠from

Figure 2a, (2) uses off-the-shelf debuggers like LLDB to collect the debug locations of the executed
paths of the unoptimized program 𝑃 and the optimized counterpart 𝑃 ′ respectively, and (3) checks
whether there exist some inconsistencies like Figure 2d (e.g., line 5 that appears to be executed
on 𝑃 ′ while this line never appears to be executed on 𝑃). However, testing techniques may miss
the debug location bug if the executed path cannot expose the inconsistency and cannot find lost
debug location bugs. More importantly, they cannot pinpoint the update errors in the optimization
or suggest fixing patches.

3 Approach

This section presents our robustification approach implemented as MetaLoc. Figure 3 illustrates
the workflow of MetaLoc, which takes an optimization pass in LLVM as input. Our robustification
approach determines the debug location updates via the proposed control-flow conformance
analysis. Specifically, MetaLoc instruments the given optimization pass 𝑂 (step 1) and runs the
instrumented pass against some unoptimized program 𝑃 to generate the optimized counterpart
𝑃 ′. In this process, MetaLoc (1) obtains the control-flow graph of 𝑃 and 𝑃 ′ (steps 2 and 4), (2)
identifies the source and destination instructions via monitoring specified instruction manipulations
(step 3). Next, MetaLoc determines the proper debug location update operations via control-flow
conformance analysis and outputs the final debug location updates (steps 5 - 6). Finally, with the
determined updates, we robustify developer-written updates in the optimization pass (step 7).

In the following, Section 3.1 presents how MetaLoc identifies the destination and source instruc-
tions. Section 3.2 explains how MetaLoc determines updates by determining the update operations
via control-flow conformance analysis. Section 3.3 presents the overall algorithm of our approach.

3.1 Identifying Update Destinations and Sources

To identify the destination and source instructions, our approach monitors the LLVM IR instruction
manipulations performed by the optimization pass. In LLVM, class Instruction abstracts all the
IR instructions. From Instruction’s APIs that manipulate instructions, we can distill six kinds of
manipulations: Create, Clone, Move, Insert, Delete, Replace. Among the six kinds of manipulations,
four of them (i.e., Create, Clone, Move, Replace) can capture the destination and source instruc-
tions, while Insert and Delete cannot. Thus, the four kinds of manipulations listed in Table 1 are
monitored. We give details about how they capture source and destination instructions below.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 168. Publication date: June 2025.

168:8 Shan Huang, Jingjing Liang, Ting Su, and Qirun Zhang

Algorithm 1: Identifying the Destination and Source Instructions
Input: The monitored instruction manipulations IM
Output: The pairs of destination and source instructions

1 DI ← ∅ // Initialize an empty set of destination instructions
2 SIM ← {} // Initialize an empty mapping from the destination instructions to source instructions
3 foreach instruction manipulation im in IM do

4 if im is ⟨Create, 𝑠⟩ then DI = DI ∪ {𝑠}
5 else if im is ⟨Clone, 𝑠new, 𝑠old⟩ then
6 DI = DI ∪ {𝑠new}
7 SIM [𝑠new] = {𝑠old }
8 else if im is ⟨Move, 𝑠to, 𝑠from⟩ then
9 DI = DI ∪ {𝑠to}

10 SIM [𝑠to] = {𝑠from}

11 foreach instruction manipulation im in IM do

12 if im is ⟨Replace, 𝑠to, 𝑠from⟩ and 𝑠to ∈ UD then

13 if SIM has an entry with key 𝑠to then SIM [𝑠to] = SIM [𝑠to] ∪ {𝑠from}
14 else SIM [𝑠to] = {𝑠from}

15 return All entries in SIM

• Create: The Create creates a new instruction 𝑠 , denoted as ⟨Create, 𝑠⟩. In this case, 𝑠’s debug
location is undefined and needs to be updated. Thus, 𝑠 is identified as a destination instruction.
• Clone: The Clone creates a new instruction 𝑠new by cloning an existing instruction 𝑠old , denoted as
⟨Clone, 𝑠new, 𝑠old⟩. In this case, the new instruction 𝑠new shares the same debug location with the
cloned instruction 𝑠old . Thus, 𝑠new is identified as a destination instruction, and 𝑠old is identified
as a source instruction.
• Move: The Move moves an instruction 𝑠 from the position 𝑝from to the position 𝑝to, denoted as
⟨Move, 𝑠to, 𝑠from⟩. In this case, the instruction 𝑠to (now at the position 𝑝to) is identified as a destina-
tion instruction, while the instruction 𝑠from (originally at the position 𝑝from), which provides the
debug locations, is identified as a source instruction.
• Replace: The Replace finds all uses of the instruction 𝑠from and replaces them with 𝑠to, denoted
as ⟨Replace, 𝑠to, 𝑠from⟩. In this case, if 𝑠to is identified by Create, Clone or Move as the destination
instruction, the replacing instruction 𝑠from will be identified as the source instruction of 𝑠to.
Algorithm 1 shows how MetaLoc identifies the destination and source instructions. It takes

an optimization 𝑂 as input and outputs the update pairs. An update pair ⟨𝑠dst, 𝑆src⟩ includes the
destination and the set of its corresponding source instructions identified from 𝑂 . Algorithm 1
starts by initializing an empty set DI that collects destination instructions and an empty map SIM
that records the pairs of the destination instructions and their corresponding source instructions
(lines 1-2). All four instruction manipulations are collected in the set IM by scanning specific LLVM
APIs (line 3). Section 4 gives the details of these specific LLVM APIs. In the first loop (lines 3-11),
MetaLoc identifies the destination instructions via Create, Clone, and Move (lines 5, 7, 10), and the
corresponding source instructions via Clone and Move (line 8 and line 11). In the second loop (lines
12-17), MetaLoc finds the source instructions for the destination instruction via Replace based on
the results from the first loop.

Example 3.1. Consider the motivating example in Section 2.2. From the monitored manipu-
lation ⟨Clone, %accumulator.ret.tr, %add⟩, %accumulator.ret.tr is identified as the destination
instruction, i.e., DI = {%accumulator.ret.tr}, and %add is the corresponding source instruction, i.e.,

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 168. Publication date: June 2025.

Robustifying Debug Information Updates in LLVM via Control-Flow Conformance Analysis 168:9

SIM [%accumulator.ret.tr] = {%add}. Because there is no other monitored manipulations that ma-
nipulates %accumulator.ret.tr, no new source instructions are added to SIM [%accumulator.ret.tr].
Thus, the pair is ⟨%accumulator.ret.tr, {%add}⟩.

3.2 Control-Flow Conformance Analysis

After identifying the source and destination instructions, we need to determine the proper update
operation (i.e., Preserve, Merge, or Drop) for those instructions. Unfortunately, the existing LLVM
documentation provides only informal guidelines on how to update debug locations correctly [Ku-
mar 2020]. The key insight behind our approach is to leverage the control-flow structures of the
original program 𝑃 and its optimized counterpart 𝑃 ′ to determine the proper debug update op-
erations for 𝑃 and 𝑃 ′. This is based on the observation that most LLVM optimization passes do
not introduce extra debug locations into the optimized program, as extra locations could provide
misleading information during debugging. Intuitively, the debug locations along a path in the
optimized program 𝑃 ′ should be a subset of those along the corresponding path in 𝑃 . We formally
state it as a conformance relation.

Definition 3.2 (Conformance Relation). Consider a control-flow path 𝛾 ′ in the optimized program
𝑃 ′ and its corresponding path 𝛾 in the original program 𝑃 . Let 𝐿𝛾 ′ and 𝐿𝛾 denote the sets of
debug locations attached to the instructions in 𝛾 ′ and 𝛾 , respectively. We say that 𝛾 ′ and 𝛾 form a
conformance relation if and only if 𝐿𝛾 ′ ⊆ 𝐿𝛾 .

Note that Definition 3.2 considers the case in which a control-flow path 𝛾 ′ in 𝑃 ′ is optimized
from a single original path 𝛾 in 𝑃 . In practice, however, compiler optimizations may merge or
split control-flow paths. The conformance relation naturally generalizes to split paths, since each
optimized path still corresponds to a single original path. For merged paths, the conformance
relation can be extended by generalizing 𝐿𝛾 to account for the debug locations associated with
instructions from all contributing original paths. Our work does not directly check conformance
across all paths in the programs. Instead, we focus on the source 𝑠src and destination 𝑠dst instructions
identified in Algorithm 1. For simplicity and clarity, for a given update pair ⟨𝑠dst, {𝑠src, . . .}⟩, we use
𝑑𝑠𝑡 and 𝑠𝑟𝑐 to denote the sets of destination {𝑠dst} and source instructions {𝑠src, . . .}, respectively.
To determine update operations that enforce the conformance relation, we collect debug location
sets for the destination and source instructions.

Definition 3.3 (Debug Location Sets). Consider a set of instructions 𝑆 = {𝑠1, ..., 𝑠𝑛}. Let Γ𝑆 be the
set of control-flow paths that pass through any instruction in 𝑆 . We define the debug location set
w.r.t. 𝑆 as

L𝑆 =
⋃
𝛾 ∈Γ𝑆

𝐿𝛾 .

Therefore, based on the source and destination instructions src = {𝑠src, . . .} and dst = {𝑠dst}, we
collect the corresponding debug location sets Lsrc and Ldst , respectively. With these notations, we
now proceed to formally introduce our control-flow conformance analysis.

Definition 3.4 (Control-Flow Conformance Analysis). Given two debug location sets, Lsrc from 𝑃

and Ldst from 𝑃 ′, control-flow conformance analysis determines the debug update operation for
𝑠dst as follows:
• Drop, if Ldst ⊈ Lsrc ;
• Preserve, if Ldst ⊆ Lsrc and |𝑠𝑟𝑐 | = 1; and
• Merge, if Ldst ⊆ Lsrc and |𝑠𝑟𝑐 | > 1.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 168. Publication date: June 2025.

168:10 Shan Huang, Jingjing Liang, Ting Su, and Qirun Zhang

entry

if.then if.else
𝑠!"#

𝑃

𝛾… …

(a) Unoptimized program 𝑃 .

aaaaaaaaaa

entry

if.then if.else

𝑠!"#
𝑃!"

𝛾′… …β′

(b) Optimized 𝑃 ′1 with an instruc-

tion movement.

entry

if.then if.else

𝑃!"

𝛾′
… …

𝑠!"#

(c) Optimized 𝑃 ′2 with an instruc-

tion replacement.

Fig. 4. Illustration of the rationale behind control-flow conformance analysis. The dashed lines denote control-

flow paths.

FromDefinition 3.4, we can see that, based on the control-flow graphs of 𝑃 and 𝑃 ′, the control-flow
conformance analysis computes the proper debug update operation for the source and destination
instructions 𝑠dst and 𝑠dst . The rationale behind the control-flow conformance analysis is to determine
whether the destination instruction 𝑠dst appears in control-flow paths where the source instructions
are absent. Ideally, we can obtain the correspondence between the control-flow paths in 𝑃 ′ and 𝑃 ,
i.e., mapping a path 𝛽 ′ in 𝑃 ′ to the path 𝛽 in 𝑃 . If there is a path 𝛽 ′ ∈ Γdst but the corresponding path
𝛽 ∉ Γsrc , we should perform a Drop, because preserving the debug location to 𝑠dst would lead to an
extra debug location on the path 𝛽 ′ (i.e., 𝐿𝛽 ′ ⊈ 𝐿𝛽), violating the conformance relation. Consider two
optimization scenarios without control-flow changes w.r.t. an update pair ⟨𝑠dst, {𝑠src}⟩ in Figure 4.
• Figure 4a depicts the source instruction 𝑠src in the unoptimized program 𝑃 . Let 𝛾 be the control-
flow path passing through 𝑠src . If the optimization moves 𝑠src from block if.then to entry, the
destination instruction 𝑠dst after moving is shown in the optimized program 𝑃 ′1 in Figure 4b. In
this case, Γsrc = {𝛾} while Γdst = {𝛾 ′, 𝛽 ′}. If we preserve the debug location of 𝑠src to 𝑠dst , the path
𝛽 ′ will have an extra debug location (i.e., the debug location of 𝑠src) that did not exist before the
optimization. Thus, the update operation should be Drop.
• If the optimization replaces 𝑠src with a new instruction 𝑠dst inside the same basic block if.then,
𝑠dst is the destination instruction in the optimized program 𝑃 ′2 shown in Figure 4c. In this case,
Γdst = {𝛾 ′} and Γsrc = {𝛾} and preserving the debug location of 𝑠src to 𝑠dst would not lead to extra
debug location on any control-flow path. Thus, the correct update operation should be Preserve.
In practice, it is difficult to establish the precise correspondence between the control-flow

paths in the optimized and unoptimized programs. Thus, our analysis over-approximates the ideal
situation, where the precise correspondence between control-flow paths in 𝑃 and 𝑃 ′ is obtainable,
by abstracting these paths (i.e., Γdst and Γsrc) based on the debug locations that can be collected from
them (i.e., Ldst and Lsrc). More specifically, we use the debug locations on the control-flow paths in
𝑃 ′ to indicate the corresponding original control-flow paths in 𝑃 .

Algorithm 2 gives the details of control-flow conformance analysis. As shown in the algorithm,
the control-flow conformance analysis first collects the debug location sets Lsrc and Ldst (lines 1-4
and the function CollectDebugLocsFromCFG). Next, it determines the proper debug location update
operation by comparing the two debug location sets Ldst and Lsrc and output it with the given
update pair (lines 5-11). Note that when we collect paths from a given control-flow graph, each
path is allowed to traverse the loops in the graph only once to avoid path explosion. Although the
paths traverse a loop only once, the debug locations of each branch in the loop can be covered by
at least one path.

Example 3.5. Consider the example in Section 2.2. Through Algorithm 1, we have identified the
update pair ⟨%accumulator.ret.tr, {%add}⟩. In this step, the set Lsrc and Ldst is first collected. For
the source instruction %add, the only path passing it on the control-flow graph of 𝑃 is entry→

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 168. Publication date: June 2025.

Robustifying Debug Information Updates in LLVM via Control-Flow Conformance Analysis 168:11

Algorithm 2: Control-Flow Conformance Analysis
Input: An update pair ⟨𝑠dst , 𝑆src⟩, the 𝑃 ’s and 𝑃 ′’s control control-flow graphs 𝐺𝑃 and 𝐺𝑃 ′

Output: The determined debug location update
1 Lsrc ← ∅
2 foreach 𝑠src ∈ 𝑆src do Lsrc ← Lsrc ∪ CollectDebugLocsFromCFG(𝑠src,𝐺𝑃)
3 Ldst ← CollectDLInfoFromCFG(𝑠dst ,𝐺𝑃 ′)
4 if Ldst ⊈ Lsrc then return ⟨𝑠dst , 𝑆src, Drop⟩
5 else

6 if |𝑆src | = 1 then return ⟨𝑠dst , 𝑆src, Preserve⟩
7 else return ⟨𝑠dst , 𝑆src, Merge⟩

if.then→ if.then2→ return, resulting in Lsrc = {2, 3, 4, 5, 11}. For the destination instruction
%accumultor.ret.tr, the only path passing it on the control-flow graph of 𝑃 ′ is entry→ tailrecurse

→ if.then→ if.else, resulting in Ldst = {2, 3, 4, 5, 7, 11}. Therefore, Ldst ⊈ Lsrc and the control-
flow conformance analysis on the update pair determines the update operation Drop.

We prove the correctness of control-flow conformance analysis by showing that it guarantees
the conformation relation. Our proof focuses on the conformance relation defined in Definition 3.2,
but it can be generalized to conformance relations that involve split and merged control-flow paths.

Theorem 3.6. The update operation obtained by control-flow conformance analysis (Definition 3.4)
guarantees that the conformance relation (Definition 3.2) holds w.r.t. the update pair ⟨𝑠dst, {𝑠src, ...}⟩.

Proof. Our control-flow conformance analysis outputs one of the update operations Preserve,
Merge, and Drop. It suffices to prove that in each case, we have 𝐿𝛽 ′ ⊆ 𝐿𝛽 for the affected path 𝛽 ′ ∈ Γdst
in 𝑃 ′ and its corresponding original path 𝛽 in 𝑃 . Consider the Drop update operation, i.e.,Ldst ⊈ Lsrc .
If only the debug locations inLdst∩Lsrc can be collected from 𝛽 ′, the conformance relation 𝐿𝛽 ′ ⊆ 𝐿𝛽
inherently satisfies (i.e., no extra debug location is introduced) and dropping the debug location
would not break the relation (only making 𝐿𝛽 ′ smaller). If a debug location 𝑙 ∈ Ldst \ Lsrc can be
collected from 𝛽 ′, the original path 𝛽 does not traverse any of the source instructions (i.e., 𝑙 ∉ Lsrc).
However, after optimization, 𝑠dst appears in 𝛽 ′. Thus, performing Drop on the destination instruction
ensures 𝐿𝛽 ′ ⊆ 𝐿𝛽 ; otherwise, the extra debug location information from the source instructions
would be introduced to 𝛽 ′, resulting in 𝐿𝛽 ′ ⊈ 𝐿𝛽 . In contrast, if the update operation is Preserve
or Merge, i.e., Ldst ⊆ Lsrc , for each path 𝛽 ′ ∈ Γdst , the relation 𝐿𝛽 ′ ⊆ 𝐿𝛽 inherently holds and the
original path 𝛽 already includes the debug locations of the source instructions. Thus, preserving
the debug locations of the source instructions would not lead to incorrect debug location in 𝛽 ′, but
would improve the completeness of the debug location. □

The control-flow conformance analysis, for a destination instruction, collects all the control-
flow paths passing through it, including those that may not be executed at runtime. Thus, the
analysis accounts for all possible execution paths, which are affected, of a program. However, the
overall robustification approach (i.e., determining the proper updates and reporting the incorrect
developer-written updates) is neither sound nor complete.

3.3 Robustifying Debug Location Updates

This section presents the overall algorithm of our approach for robustifying debug location updates
in LLVM. Specifically, we first determine debug location updates for a given optimization with the
proposed control-flow conformance analysis and then check the developer-written updates with
the determined updates as the reference. Any inconsistencies indicate potential debug location

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 168. Publication date: June 2025.

168:12 Shan Huang, Jingjing Liang, Ting Su, and Qirun Zhang

Algorithm 3: Robustifying Debug Location Updates
Input: A compiler optimization O and the input program 𝑃

Output: Debug location update skeletonsU𝑠

1 𝑂 ′ ← InstrumentOptimization(𝑂)
2 𝐺𝑃 ← ObtainControlFlowGraph(𝑃)
3 𝑃 ′, IM ← RunOptimization(𝑂 ′, 𝑃)
4 𝐺𝑃 ′ ← ObtainControlFlowGraph(𝑃 ′)
5 U ← ConstructDebugLocUpdates(IM,𝐺𝑃 ,𝐺

′
𝑃
)

6 U𝑠 ← ∅ // Initialize an empty set of update skeletons
7 foreach 𝑈 = ⟨𝑠dst , 𝑆src, 𝑜𝑝⟩ ∈ U do

8 𝑜𝑝exist ← IdentifyExistingUpdateOperations(𝑠dst)
9 if 𝑜𝑝 ≠ 𝑜𝑝exist then U𝑠 ←U𝑠∪ ConstructSkeleton(𝑈)

10 return U𝑠

update errors, and update skeletons are generated according to the determined updates to assist in
fixing the errors.
Algorithm 3 explains this process. It takes as input an optimization 𝑂 and an unoptimized

program 𝑃 , and outputs the update skeletons for any found potential update errors. In line 1, it
instruments the given optimization 𝑂 for monitoring the four kinds of instruction manipulations
(step 1). Before running the instrumented optimization, we obtain the control-flow graph of the
program 𝑃 (step 2 , line 2). Next, we run the instrumented optimization 𝑂 ′ with 𝑃 , obtaining the
optimized program 𝑃 ′ and the monitored instruction manipulations. After optimization, we obtain
the control-flow graph of 𝑃 ′ (step 3 , line 4). At the core of the algorithm, debug location updates
are determined via Algorithms 1 and 2 (steps 4 - 6 , line 5). For each determined debug location
update ⟨𝑠dst, 𝑆src, 𝑜𝑝⟩, it compares the determined operation 𝑜𝑝 with the developer-written update
operation 𝑜𝑝exist in the optimization 𝑂 w.r.t. the destination instruction 𝑠dst (lines 7-9). If 𝑜𝑝 and
𝑜𝑝exist are different, a potential update error is found and an update skeleton (illustrated in Section 4)
for fixing is generated (line 10). To identify existing update operations in 𝑂 , we instrument and
monitor the update operations of the developer-written updates (i.e., Preserve, Merge, Drop) in 𝑂 .
Note that in some cases, the destination instructions may not have explicit update operations. In
such cases, we infer the existing update operations based on how the destination instructions are
created. For example, if 𝑠dst is created by ⟨Create, 𝑠⟩, the update operation is Drop (because the
debug location is undefined); if 𝑠dst is created by ⟨Clone, 𝑠new, 𝑠old⟩ or ⟨Move, 𝑠to, 𝑠from⟩, the update
operation is Preserve (because the debug location is retained from 𝑠old or 𝑠from).

Example 3.7. Consider again the motivating example in Section 2.2. After instrumenting the pass
TailRecursionElimination, we run the instrumented pass with the IR program 𝑃 in Figure 2c
to obtain the optimized program 𝑃 ′ in Figure 2d and the monitored instruction operations. After
obtaining the control-flow graphs of 𝑃 and 𝑃 ′, we determine the debug location update using
Algorithm 2. Examples 3.1 and 3.5 further describe the determination process. The determined debug
location update is ⟨%accumulator.ret.tr, {%add}, Drop⟩. However, the existing update operation
for the destination instruction %accumulator.ret.tr is Preserve. Because of the inconsistency, an
update error is reported and an update skeleton for that error is generated.

4 Implementation

We implemented our approach as a tool named MetaLoc. MetaLoc consists of two components:
(1) a lightweight built-in library for LLVM, which realizes our approach, and (2) a standalone pass

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 168. Publication date: June 2025.

Robustifying Debug Information Updates in LLVM via Control-Flow Conformance Analysis 168:13

Table 2. Hooks injected into the LLVM optimizations and the target LLVM APIs.

Hook Functionality Target LLVM APIs

OnCreate
Monitor instruction manipulations of the optimization pass
and record the destination and source instructions

BinaryOperation::Create*
OnMove Instruction::Move*
OnClone Instruction::clone
OnUseReplace Value::replaceAllUsesWith

OnPreserve Monitor the debug location updates implemented by
developers in optimization passes

Instruction::setDebugLoc
OnMerge Instruction::applyMergedLocation
OnDrop Instruction::dropLocation

OnStart Initialize the analysis and collect debug locations from the
input unoptimized programs

Before the first statement in the opti-
mization pass entry *Pass::run

OnFinish Collect debug locations from the optimized programs, check
potential update errors, and generate update skeletons

Before each return statement in the op-
timization pass entry *Pass::run

Table 3. Update skeletons generated by MetaLoc.

Skeleton Type Update Skeleton Actual LLVM Code Add by Developers

Preserving Line <number> Preserve(DstInst, SrcInst) DstInst->setDebugLoc(SrcInst->getDebugLoc());
Merging Line <number> Merge(DstInst, SrcInst1, ..., SrcInstN) DstInst->applyMergedLocation(SrcInst1, SrcInst2);
Dropping Line <number> Drop(DstInst) DstInst->dropLocation();

instrumentation tool for analyzing LLVM optimizations. We give some important implementation
details of our approach below.
Instrumenting LLVM Optimizations. The instrumentation tool injects some hooks into LLVM
optimizations to obtain the runtime information and integrate our analysis. Table 2 lists these
hooks (grouped by their effects).

• Monitoring Instruction Manipulations. The first group of hooks (the first row in Table 2) monitors
instruction manipulations (i.e., Create, Clone, Move, Replace) for identifying the destination and
source instructions (step 4). In LLVM, IR instructions of the subclasses of Instruction have their
own Create APIs, while other manipulations use the APIs provided by Instruction. Specifically,
all Create APIs from Instruction and its 36 subclasses (e.g., BinaryOperator) are monitored by
OnCreate; three Move APIs, one Clone API, and one Replace API are provided by Instruction, and
them are all monitored by the corresponding hooks listed in the table. The second group of hooks
(the second row in Table 2) monitors the existing update operations (i.e., Preserve, Merge, and
Drop) implemented in the optimizations for finding potential update errors (Section 3.3). The
three target APIs listed in the table are the standard APIs for updating debug locations.
• Integrating our Analysis. The hook OnStart initializes our analysis and collects debug locations
from the unoptimized program 𝑃 (step 2) at the beginning of the optimization. The hook OnFinish
collects debug locations from the optimized 𝑃 ′ (step 3) at the end of the optimization, executes
the control flow conformance analysis, and generates update skeletons if enabled.

Collecting Debug Location. In steps 2 and 3 , we use depth-first search to collect debug locations
from the control flow graphs of 𝑃 and 𝑃 ′. Since our approach is implemented as a built-in library,
we can collect debug locations using LLVM classes like BasicBlock and Instruction.
Update Skeleton. MetaLoc generates update skeletons for identified update errors to assist in
their fixing. Table 3 lists the three types of update skeletons. The column “Update Skeleton” shows
the forms of update skeletons generated by MetaLoc. Note that these update skeletons include
concrete variables from the LLVM optimization implementation that represent the destination and
source instructions, along with the specific LLVM APIs used for the update operation. The update
skeleton also suggests a reference source code line in the LLVM optimization implementation
where the determined debug location update should be added. Informed by these update skeletons,
LLVM developers could manually instantiate the skeletons into ready-to-use patches to fix debug
location update errors. The last column of Table 3 gives some specific examples.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 168. Publication date: June 2025.

168:14 Shan Huang, Jingjing Liang, Ting Su, and Qirun Zhang

5 Evaluation

We evaluate MetaLoc by addressing the following two research questions:
• RQ1: How accurate are the debug location updates determined by MetaLoc?
• RQ2: How effective is MetaLoc in finding and fixing previously unknown debug location update
errors in LLVM?
To answer RQ1, we assemble a dataset of historical update error fixes confirmed by LLVM

developers as the ground truth, and investigate howmany of the debug location updates determined
by MetaLoc are identical to the ground truth. To answer RQ2, we apply MetaLoc to the latest
version of LLVM at the time of our work (as of November 2024) to investigate how many previously
unknown debug location update errors can be found and fixed with the help of the update skeletons
generated by MetaLoc. We summarize the main results of our experiments below.
• In the dataset of 31 debug location updates implemented and confirmed by LLVM developers,
MetaLoc successfully determined 30 updates which are identical to the ground truth.
• With the help of MetaLoc, we have found and fixed 46 previously unknown debug location
update errors in LLVM. We filed 21 pull requests with the patches for fixing these 46 errors. All
patches have been accepted and merged into LLVM. In addition, 22 new tests have been added to
the regression test suite for LLVM optimizations.
• Many of the reported debug location update errors are latent and affect many LLVM major
versions. These update errors were introduced into LLVM from 2008 to 2023, and eight errors
have been latent since before the release of LLVM 3 (Dec 1, 2011).
• We have uncovered and fixed two issues in the LLVM’s official documentation [Kumar 2020] for
guiding compiler developers to update debug information. One issue gives an incorrect debug
info update example (which should use Merge instead of Drop), and the other issue gives inaccurate
and incomplete guidelines for using Merge.

5.1 Experimental Setup

Figure 3 shows the workflow of MetaLoc that takes an optimization pass and an (unoptimized)
input program as input. This section introduces the experimental settings of RQ1 and RQ2 in terms
of the optimization passes, input programs and the procedure of running optimization pass with the
input programs. All experiments were conducted on a machine running 64-bit Ubuntu 20.04 LTS
and equipped with an AMD 3995WX 64-core CPU and 128G RAM.
Optimization passes. We perform our experiments on all the 80 optimization passes under the
LLVM’s directory llvm/lib/Transforms/Scalar [LLVM Project 2024b]. They primarily focus on
intra-procedural optimizations, performing various code transformations in which the instructions
are rearranged, moved, or eliminated. Thus, debug location updates are necessary and crucial in
these optimization passes.
Input programs. For our experiments, we used LLVM’s regression test suite, consisting of LLVM
IR programs, as the input for testing LLVM optimizations. Specifically, for each optimization
pass in llvm/lib/Transforms/Scalar, there is a subdirectory under llvm/test/Transforms/ contain-
ing the corresponding regression tests. We ran each optimization pass with all its correspond-
ing regression tests. In the latest version of LLVM (87d36c5), there are 9590 regression tests in
llvm/test/Transforms/. In contrast to randomly generated input programs, these regression tests
are more diverse and are better at covering a wide range of code transformations in LLVM. As
a result, they are more likely to involve instruction manipulations, making them suitable for
determining debug location updates.
Running an optimization pass with input programs. We used the commands provided by the
regression tests, e.g., “opt -passes=<optimization> -S”, to run an optimization pass with the input

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 168. Publication date: June 2025.

Robustifying Debug Information Updates in LLVM via Control-Flow Conformance Analysis 168:15

programs. In this command, “opt” is the LLVM mid-end optimizer driver, “-passes” specifies the
optimization pass, and “-S” denotes the assembly format. We used LLVM’s debugify pass [Vedant,
Kumar 2017] to assign synthetic debug locations for each instruction in the input program. For
example, the command “opt -S -passes=callsite-splitting -debugify Ipad.ll” assigns debug
locations and runs the CallSiteSplitting optimization pass with the input program “Ipad.ll.”
Setup for RQ1. To evaluate the accuracy of the debug location updates determined by MetaLoc,
we assembled a dataset of debug location updates implemented and verified by the LLVM developers
as the ground truth. Specifically, our dataset contains the fixes of historical update errors in LLVM
reviewed and verified by LLVM developers. To this end, we searched all the 484,935 commits of
LLVM before Jan 1, 2024, to find such fixes. First, we filtered the commits on the optimization passes
under llvm/Transforms/Scalar whose code revisions involve the LLVM APIs of debug location
update operations (i.e., setDebugLoc, applyMergedLocation, and DropLocation). After this step, we
obtained 151 relevant commits. Second, we manually excluded those commits that are not real fixes
of debug update errors. For example, in some cases, the LLVM debug update APIs are involved
because the code containing those LLVMAPIs was refactored or added for new code transformations.
After this step, we obtained 55 fixes for historical update errors. Finally, we inspected the debug
location updates in these collected fixes and retained those within the scope of our approach, i.e., at
least one destination and one source instruction could be identified via the four kinds of instruction
manipulations. We thereby obtained 31 verified debug location updates as the ground-truth dataset.
Table 4 presents the detailed information of the 31 debug location updates in this dataset. The

column “Commit ID” gives the LLVM commits and the fixed lines. The column “Fixing Date”
denotes the dates on which the update errors were fixed. The column “Optimization Pass” denotes
the optimization passes that contain the errors. The column “Operations” denotes the operations of
the debug updates. The column “Bug Type” denotes the types of the bugs caused by the historical
errors. We can see that these update errors are representative: (1) spanning a long duration from
2011 to 2023 and implemented in 16 different LLVM optimization passes, (2) involving all three
update operations, i.e., Preserve, Merge, Drop, and leading to the two different bug types.

In our experiments, we applied MetaLoc on the provided commit version of LLVM to determine
the debug location update. The determined update is counted as accurate only when its destination
and source instructions and the update operation are all identical to the ground truth.
Setup for RQ2. We applied MetaLoc to find potential debug location update errors in the latest
revision of LLVM (87d36c5) at the time of our work. Among the total 1401 optimizing functions in
the 80 optimization passes, 386 functions that directly or indirectly use the monitored APIs are
instrumented by MetaLoc in 54 passes. When a new update error was found, we filed an issue
report to LLVM and created a pull request to fix it. Specifically, each issue report includes (1) the
code snippet of the optimization where the update error was introduced, (2) the input (unoptimized)
program 𝑃 exposing the error, and (3) its optimized counterpart 𝑃 ′. A pull request includes a
patch and a new regression test. The patch is concretized from the update skeleton generated by
MetaLoc. We manually transform the update skeleton into the concretized patch code (Table 3).
The new regression test is constructed based on the input program 𝑃 . 𝑃 is added with the checks
for validating the debug locations in the optimized counterpart 𝑃 ′.

5.2 RQ1: Accuracy of the Constructed Debug Location Updates

Table 4 gives the results of RQ1. In column “Identical?”, “✓” denotes that the debug update deter-
mined by MetaLoc is identical to the corresponding update in the ground-truth dataset, and “×”
denotes that the debug update determined by MetaLoc is incorrect. We can see that MetaLoc has
successfully determined identical debug updates on 30 out of 31 cases. This shows that MetaLoc
has high accuracy in determining correct debug location updates for different update operations.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 168. Publication date: June 2025.

168:16 Shan Huang, Jingjing Liang, Ting Su, and Qirun Zhang

Table 4. Constructed debug location updates for previous LLVM releases. Compared to the ground truth,

MetaLoc has successfully generated 30 correct update skeletons. Only one update skeleton is incorrect.

Commit ID Fixing Date Optimization Pass Update Operation Bug Type Identical?

1 80d1d3a-L220 Apr 29, 2011 Reassociate Preserve Lost ✓
2 80d1d3a-L510 Apr 29, 2011 Reassociate Preserve Lost ✓
3 80d1d3a-L536 Apr 29, 2011 Reassociate Preserve Lost ✓
4 80d1d3a-L1059 Apr 29, 2011 Reassociate Preserve Lost ✓
5 33d87d9-L577 Apr 29, 2011 TailRecursionElimination Preserve Lost ✓
6 c1f7c1d-L330 Apr 30, 2011 LoopRotation Preserve Lost ✓
7 ffb798c-L2121 May 5, 2011 GVN Preserve Lost ✓
8 306f8db-L948 May 5, 2011 JumpThreading Preserve Lost ✓
9 306f8db-L1381 May 5, 2011 JumpThreading Preserve Lost ✓
10 5127c5d-L99 Jun 3, 2011 SimplifyCFGPass Preserve Lost ✓
11 89645df-L1699 Jun 11, 2015 GVN Preserve Lost ✓
12 89645df-L1767 Jun 11, 2015 GVN Preserve Lost ✓
13 5b7e21a-L315 Sep 12, 2018 CallSiteSplitting Preserve Lost ✓
14 984f1dc-L1171 Jul 19, 2017 GVN Preserve Lost ✓
15 5b7e21a-L399 Sep 12, 2018 CallSiteSplitting Preserve Lost ✓
16 35f504c-L553 Nov 18, 2018 CorrelatedValuePropagation Preserve Lost ✓
17 35f504c-L575 Nov 18, 2018 CorrelatedValuePropagation Preserve Lost ✓
18 35f504c-L598 Nov 18, 2018 CorrelatedValuePropagation Preserve Lost ✓
19 b60aea4-L1147 Mar 11, 2019 JumpThreading Preserve Lost ✓
20 b60aea4-L1251 Mar 11, 2019 JumpThreading Preserve Lost ✓
21 cc7803e-L2350 Apr 26, 2021 LoopStrengthReduce Preserve Lost ✓
22 ebd0249-L858 Sep 1, 2022 CorrelatedValuePropagation Preserve Lost ✓
23 368681f-L1153 Mar 31, 2022 GVNHoist Drop Incorrect ✓
24 52545e6-L778 Sep 29, 2022 InferAddressSpaces Preserve Lost ✓
25 84a71d5-L252 Aug 30, 2022 MergedLoadStoreMotion Merge Incorrect ×
26 84a71d5-L259 Aug 30, 2022 MergedLoadStoreMotion Merge Incorrect ✓
27 256f8b0-L844 Oct 28, 2022 StructurizeCFG Preserve Lost ✓
28 256f8b0-L956 Oct 28, 2022 StructurizeCFG Preserve Lost ✓
29 256f8b0-L977 Oct 28, 2022 StructurizeCFG Preserve Lost ✓
30 06a9c67-L943 Dec 22, 2023 CorrelatedValuePropagation Preserve Lost ✓
31 c0a986a-L1716 Jun 16, 2023 LICM Drop Incorrect ✓

Table 5. The summary of the robusitification results by MetaLoc.

Overall Results Fixes by Update Operations Bug Types

#Found Update Errors #Issued PRs #Accepted PRs #Preserve #Merge #Drop #Lost #Incorrect
46 21 21 37 2 7 37 9

Only one determined debug update is incorrect. In this case, MetaLoc determines the update
operation as Drop, which, however, should be Merge. Our approach relies on the four kinds of
instructionmanipulations that indicate the relations between the source and destination instructions,
under-approximating the overall debug location update problem. But in this case, for the destination
instruction, there are source instructions that cannot be identified by the four kinds of instruction
manipulations, which is out of the scope of our approach. Therefore, MetaLoc determined the
incorrect update operation.

5.3 RQ2: Finding and Fixing Previously Unknown Update Errors

Table 5 summarizes the overall results. In total, 46 update errors have been found and fixed via
21 pull requests to LLVM (the column “Overall Results”). All pull requests have been accepted by
LLVM developers and merged into LLVM. Specifically, among these 46 update errors, 37 errors
were fixed by the Preserve operation, two errors were fixed by the Merge operation, and seven
errors were fixed by the Drop operation (the column “Fixed by Update Operations”). Additionally,
all 37 update errors fixed by Preserve lead to lost debug locations, while the 9 update errors fixed

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 168. Publication date: June 2025.

Robustifying Debug Information Updates in LLVM via Control-Flow Conformance Analysis 168:17

Table 6. Our patches to the found debug location update errors by pull requests.

Pull Request ID Optimization Pass Bug Type #Errors

1 76118 CorrelatedValuePropagation Lost 1
2 86236 GVNHoist Incorrect 1
3 86269 TailRecursionElimination Incorrect 1
4 91443 IndVarSimplify Lost 4
5 91581 JumpThreading Lost 3
6 91729 LICM Lost 2
7 91839 LoopLoadElimination Lost, Incorrect 3
8 92545 NaryReassociate Lost 2
9 92859 GVNSink Incorrect 1
10 95742 TailRecursionElimination Incorrect 2
11 96045 DivRemPairs Lost 5
12 96849 SeparateConstOffsetFromGEP Lost 2
13 96889 JumpThreading Lost 2
14 97038 InferAddressSpaces Lost 1
15 97085 LoopFlatten Lost 1
16 97145 LowerConstantIntrinsics Lost 1
17 97384 SpeculativeExecution Incorrect 1
18 97389 SimplifyCFGPass Lost 1
19 97519 LoopStrengthReduce Lost 2
20 97662 SimpleLoopUnswitch Lost, Incorrect 6
21 98789 SimpleLoopUnswitch Lost 4

#Total 46

by Merge and Drop lead to incorrect debug locations (the column “Bug Types”). Table 6 gives the
details of these reported errors and fixes. Specifically, these fixes can be classified into the following
three categories based on the expected update operations:

• Thirty-seven update errors were fixed with the Preserve operation. In these cases, the optimiza-
tions discard the debug locations that should be retained, which could lead to lost debug locations.
We examined the buggy optimization implementations that contain these errors. We find that
most of these errors occur when a code transformation replaces instructions in one basic block
but the debug locations have not been retained.
• Two update errors were fixed with the Merge operation. These two errors occur when multiple
source instructions are hoisted to a predecessor block or sunk to a successor block, but the debug
location of only one source instruction is preserved. In fact, the debug locations of all the source
instructions should be merged. Such errors lead to incorrect debug locations.
• Seven update errors were fixed with the Drop operation. These seven errors occur when the
instructions are moved or cloned across different basic blocks. However, the debug locations of
the moved or cloned instructions have not been dropped, which introduces extra debug locations
into the optimized code. Such errors lead to incorrect debug locations.

From the results in Tables 4 and 6, we note that lost debug locations are more prevalent than
incorrect debug locations. This observation also aligns with the statistics of the constructed dataset
in Table 4. The possible reason is that compiler developers are more likely to forget to update
the debug locations when moving instructions within the same basic block. Lost debug locations
are more difficult to find compared to incorrect debug locations. For example, prior work using
black-box testing techniques cannot find lost debug locations.
Affected LLVM Passes. We break down the debug update errors by the affected optimization
passes. Table 6 gives the detected errors from 18 optimization passes in total. 14 passes are affected
by lost debug locations, and these passes primarily handle code transformations that replace
instructions within the same basic block. Additionally, six passes are impacted by incorrect debug
locations, and these passes are responsible for instruction movement across blocks or modifications

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 168. Publication date: June 2025.

168:18 Shan Huang, Jingjing Liang, Ting Su, and Qirun Zhang

Trunk17161514131211109876543
LLVM Versions

0

10

20

30

40

Nu
m

be
r o

f E
rro

rs

4646464544444442
38

34333231

2524

8

(a) Affected LLVM versions and number of found errors.

aaaa

25 50 75 100 125 150 175
Months of Error Existence

4

6

8

10

12

14

16

Af
fe

ct
ed

 L
LV

M
 V

er
sio

ns

(b) Affected LLVM versions and the duration

of found errors.

Fig. 5. Statistics of the 46 debug location update errors found by MetaLoc.

to the program’s control-flow structure. The SimpleLoopUnswitch pass has the highest number
of errors (10) we have identified, including both lost and incorrect debug location errors. Notably,
eight of these errors were introduced in 2017.
Affected LLVM Versions. We further investigated the impact of the 46 update errors found by
MetaLoc. Figure 5a illustrates the impact of these update errors on various LLVM versions by
listing the number of debug location update errors. We can see that these update errors affected a
wide range of LLVM versions—from the earliest LLVM 3 to the most recent LLVM 17 and the trunk
version, and each version in between has been affected. Figure 5b shows how long these update
errors have persisted in the major versions of LLVM, and how many LLVM versions were affected.
We can see that many update errors were introduced a long time ago and have been hidden for a
long duration. For example, eight update errors affect LLVM 3, which was released about thirteen
years ago (Dec 1, 2011).

5.4 Samples of Debug Location Update Errors Found and Fixed by MetaLoc

This section selects and discusses two previously unknown update errors found by MetaLoc and
the corresponding determined updates. Because Section 2.2 covers a Drop case, this section focuses
on the Preserve and Merge cases.
An Error Fixed with Preserve. Figure 6a shows a previously unknown update error found in pass
LoopLoadElimination. The pass eliminates redundant load operations within loops by hoisting
the load instruction and reusing the loaded values in the loops. To reuse the loaded values in a
target loop, the pass inserts a new PHI instruction (recorded by variable PHI) into the loop (lines
5-6) to replace the uses of the hoisted load instruction (recorded by variable Cand.Load, line 13).
The pass does not preserve the debug location of the hoisted load instruction for the newly created
PHI instruction, resulting in lost debug locations.

Through control-flow conformance analysis, MetaLoc determines a debug location update using
Preserve, reports the inconsistency between the determined update and the existing update using
Drop, and generates the update skeleton at line 14 in Figure 6a. Then, we patch the error with the
code concretized from the update skeleton, as shown in line 15.
An Error Fixed with Merge. Figure 6b shows a previously unknown error found in pass GVNSink.
This pass sinks similar instructions for redundant value computations leveraging Global Value
Numbering (GVN). In line 5, the sinking process first chooses one of the similar instructions
(recorded by variable I0) and moves it to the specific sinking position. Then, the moved instruction
is used to replace all the instruction uses of the other similar instructions recorded by the variable
I in a for loop (line 11). The sunk instruction preserves its original debug location because the
movement does not remove or replace one’s debug location. Figure 6b gives the control-flow graph

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 168. Publication date: June 2025.

Robustifying Debug Information Updates in LLVM via Control-Flow Conformance Analysis 168:19

void propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand,
SCEVExpander &SEE) {

...

PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded"); // Creating
PHI->insertBefore(L->getHeader()->begin());
PHI->addIncoming(Initial, PH);

...

PHI->addIncoming(StoreValue, L->getLoopLatch());

Cand.Load->replaceAllUsesWith(PHI); // Use replacing
// Update Skeleton: Line 481 Preserve(PHI, Cond.Load)
PHI->setDebugLoc(Cond.Load->getDebugLoc()); // Patch code

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15 +
16

(a) The previously unknown error found in LoopLoadElimination, which is fixed with the Preserve operation
(line 15), i.e., preserving the debug location of the instruction pointed by Cond.Load to that pointed by PHI.

void GVNSink::sinkLastInstruction(ArrayRef<BasicBlock *> Blocks,
BasicBlock *BBEnd) {

...
// Moving
I0->moveBefore(&*BBEnd->getFirstInsertionPt());

...

for (auto *I : Insts)
if (I != I0) {

I->replaceAllUsesWith(I0); // Use replacing
// Update Skeleton: Line 925 Merge(I0, I, ...)
I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); // Patch code

}
...

}

1
2
3
4
5
6
7
8
9

10
11
12
13 +
14
15
16

entry

if.then
𝑠! 𝑠" 𝑠#

if.then1 if.then2

𝑠!$
if.end

move (line 5) use replace (line 11)

(b) The previously unknown error found in GVNSink. The error is fixed with the Merge operation (line 13), i.e.,
merging the debug locations of instructions pointed by I and I0.

Fig. 6. Two sample debug location update errors found and fixed by MetaLoc in the LLVM optimizations.

to illustrate the sinking process. In the graph, the instruction 𝑠0 (recorded by I0) in block if.then

is moved to block if.end (denoted by 𝑠′0) and then replaces the uses of instruction 𝑠1 (recorded by
I) in block if.then1 and 𝑠2 in if.then2. However, preserving only one of the instructions’ debug
locations leads to an incorrect debug location bug. For example, when debugging, if the program
execution path enters if.end from if.then1, the debugger prints the debug location of 𝑠′0, which
points to the unreachable block if.then, misleading the users.

Through control-flow conformance analysis, MetaLoc determines an update using Merge. Then,
it reports the inconsistency and generates the update skeleton shown in line 12. Concretizing from
the update skeleton, we patch the error with the code in line 13.

5.5 Discussions

Limitations of MetaLoc. First, our approach under-approximates the overall debug location
update problem in optimizing compilers. It relies on instruction manipulations to capture source
and destination instructions, which form the basis of control-flow conformance analysis. However,
when optimizations rebuild the IR (e.g., code transformation via IRBuilder APIs), our approach
cannot identify the source instructions for debug location updates. Nevertheless, the four instruction
manipulations (Table 1) are general in compiler optimizations and 54 LLVM optimization passes use
these manipulations and the corresponding APIs. Second, due to control-flow modifications during
optimization, our control-flow conformance analysis is flow-insensitive (i.e., an over-approximation)
by design, whichmay result in incorrect debug location updates using Drop. Third, not all LLVMAPIs
that align with our selected kinds of instruction manipulations are covered in the implementation.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 168. Publication date: June 2025.

168:20 Shan Huang, Jingjing Liang, Ting Su, and Qirun Zhang

Currently, we support APIs in the Instruction class and its subclasses, as they perform dedicated
manipulations without side effects. However, APIs and developer-defined wrappers that align with
the manipulations but have side effects are excluded. For example, the Create APIs in IRBuilder

can both create instructions and assign debug locations simultaneously. Though these limitations
may lead to missed or incorrect debug location updates in theory, the evaluation in Section 5.2
shows that MetaLoc achieves high accuracy, correctly determining debug location updates in 30
out of 31 cases. In addition, as shown in Section 5.3, MetaLoc did not produce false positives in
our experiments, and all reported patches are correct and have been accepted into LLVM.
MetaLoc’s Generality. Our work introduces the first LLVM-based approach to inferring debug
location update principles through control-flow analysis, i.e., determining the proper updates via
control-flow conformance analysis. The concept of instruction manipulations is general, making our
approach applicable to other CFG-based IR systems that utilize these manipulations. For instance,
it could potentially be adapted for GCC, which also employs a CFG-based IR and a similar debug
location maintenance mechanism. However, GCC’s compilation pipeline and IR structure differ
from LLVM’s. We anticipate that applying our technique to GCC’s implementation would require
considerable effort.
Limitations of the Existing Debug Location Maintenance in LLVM. In LLVM IR, debug
locations must be attached to instructions, and one instruction can only have one debug location
attached. These limitations result in a tradeoff between correctness and completeness of debug
locations in optimized code. While ensuring the correctness of the debug locations in optimized
programs, dropping debug locations leads to debug location loss, compromising completeness.When
merging instructions, preserving any debug location of the source instructions could invalidate
the debug information. LLVM developers balance this tradeoff by retaining the debug locations of
instructions that may cause crashes (e.g., memory instructions such as store instructions) for better
postmortem analysis, the retained debug locations may be misleading in debugging.
Completeness of Debug Location Information. Ideally, the debug information in the optimized
programs should be correct and complete. In this work, we focus on determining correct debug
location updates to ensure the debug locations in the optimized program meet the conformance
relation, i.e., the correctness. However, ensuring the completeness of the debug locations is inher-
ently more challenging, due to the discussed limitations of its maintenance in LLVM. Some degree
of debug location loss is inevitable after optimization. Furthermore, designing an oracle to directly
detect debug location loss caused by incorrect updates is difficult, as optimizations themselves can
introduce loss. Our work retains debug locations that are unlikely to lead to misleading debug
information to improve completeness.
Refinement to LLVM Documentation. In addition to the patches to update errors in LLVM,
we have also patched the LLVM documentation on updating debug information. Specifically, we
have fixed an incorrect update example and refined an inaccurate example. These two examples
are in the section “When to merge instruction locations” and are not consistent with our control-
flow conformance. The incorrect update example suggests that developers should drop the debug
location when hoisting or sinking identical instructions. However, the Drop operation should be
only used when retaining the debug location which violates the conformance relation of debug
location. The inaccurate example only suggests the Merge operation for hoisting or sinking identical
instructions from “both sides of a CFG diamond”. We refine this example by complementing the
example description: “Hoisting identical instructions from all successors of a conditional branch or
sinking those from all paths to a post-dominating block. ... For each group of identical instructions
being hoisted/sunk, the merge of all their locations should be applied to the merged instruction.”
Instrumentation Overhead. The instrumentation overhead in our work primarily stems from
the control-flow conformance analysis, which involves CFG traversals to collect debug locations

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 168. Publication date: June 2025.

Robustifying Debug Information Updates in LLVM via Control-Flow Conformance Analysis 168:21

and debug location set comparisons. The overhead is negligible (running the opt command with
the original and instrumented pass both take approximately 15 milliseconds per test case), as the
instrumented pass only processes a small LLVM IR snippet per run.

6 Related Work

Debug Information Testing. Ensuring the accuracy and reliability of debug information in opti-
mized programs is crucial to improving the usability and user experience of modern debugging
utilities [Stinnett and Kell 2024]. Since the first work [Hennessy 1982] that introduced techniques to
recover variable information in source code from optimized programs, how to debug optimized pro-
grams has been extensively studied [Adl-Tabatabai and Gross 1996; Copperman 1994]. Despite these
efforts, incorrect or lost debug information still frustrates software developers. The seminal work [Li
et al. 2020] proposes the first testing framework and introduces actionable programs for detecting
incorrect debug value information by inspecting debugger-printed values. Debug2 [Di Luna et al.
2021] generalizes the prior work to testing the correctness of both debug values (i.e., variable infor-
mation) and locations by four designed invariants. Instead of focusing on the correctness of debug
information, conjecture-based oracles [Assaiante et al. 2023] are proposed to test the completeness
of debug variable information, i.e., finding lost debug variable information. The conjectures are
empirically derived, which tell when a variable should be presented by the debugger. All of these
prior works use black-box testing techniques and check the consistency of the debugger-interpreted
debug information. Different from these works, our approach analyzes the code of the optimization
implementations to determine the correct debug location updates. Therefore, our approach can
pinpoint debug location update errors in the optimization implementation and also help fix these
errors by generating update skeletons.
Automated Program Repair. In recent years, APR techniques have been proposed to reduce
bug-fixing efforts. Some of the APR techniques target bugs in particular scenarios. ProveNFix [Song
et al. 2024] utilizes temporal property to deal with temporal bugs, such as memory leaks, unchecked
return values, and double-free. FootPatch [van Tonder and Le Goues 2018] relies on separation
logic to fix bugs related to resource release, freeing memory, and null pointer dereferences. Other
general APR techniques usually employ a variety of methodologies, such as search-based [Le Goues
et al. 2011], constraint-based [Nguyen et al. 2013], template-based [Liu et al. 2019], and learning-
based [Zhang et al. 2023] approaches, to fix general types of bugs. To our knowledge, none of the
existing techniques can fix debug location update errors in LLVM. Existing general APR techniques
are based on the generate-and-validate paradigm. They typically rely on a test suite with at least
one failing test case to perform bug localization and validate the correctness of the generated patch.
As a result, APR techniques primarily address existing bugs. In contrast, our approach identifies
new debug information bugs by determining the correct debug location updates. These updates
serve as a reference, enabling the detection and fixing of potential update errors in LLVM.

7 Conclusion

This paper has proposed the first technique for robustifying debug location updates in LLVM
via a novel approach called control-flow conformance analysis. For a given LLVM optimization,
the technique automatically constructs debug location updates and then uses them to pinpoint
the update errors and suggest ready-for-use fixing patches. We have realized this technique as a
tool named MetaLoc. With MetaLoc, we have found and fixed 46 previously unknown update
errors in the latest version of LLVM. All the patches, along with 22 new regression tests, have been
accepted and merged into LLVM. Informed by our approach, we have also uncovered and patched
two issues in LLVM’s official documentation on updating debug information. Our work provides a
new perspective on improving the reliability of debug information updates in LLVM.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 168. Publication date: June 2025.

168:22 Shan Huang, Jingjing Liang, Ting Su, and Qirun Zhang

Acknowledgments

We thank the anonymous PLDI reviewers and the shepherd for their valuable feedback. This work
was supported in part by National Key Research and Development Program (Grant 2022YFB3104002),
Shanghai Trusted Industry Internet Software Collaborative Innovation Center, “Digital Silk Road”
Shanghai International Joint Lab of Trustworthy Intelligent Software under Grant 22510750100.
This work is also supported by the United States National Science Foundation (NSF) under grants
No. 2114627 and No. 2237440. Any opinions, findings, conclusions, or recommendations expressed
in this publication are those of the authors and do not necessarily reflect the views of the above
sponsoring entities.

Artifact

The data and implementation referenced in this paper have been persistently archived [Shan et al.
2025]. The latest version of MetaLoc is also made publicly available on https://github.com/ecnusse/
MetaLoc.

References

Ali-Reza Adl-Tabatabai and Thomas Gross. 1996. Source-level debugging of scalar optimized code. In Proceedings of the
ACM SIGPLAN 1996 Conference on Programming Language Design and Implementation (Philadelphia, Pennsylvania, USA)
(PLDI ’96). Association for Computing Machinery, New York, NY, USA, 33–43. doi:10.1145/231379.231388

Sanjeev Kumar Aggarwal and M. Sarath Kumar. 2002. Debuggers for Programming Languages. In The Compiler Design
Handbook. 295–382.

Cristian Assaiante, Daniele Cono D’Elia, Giuseppe Antonio Di Luna, and Leonardo Querzoni. 2023. Where Did My
Variable Go? Poking Holes in Incomplete Debug Information. In Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume 2 (Vancouver, BC, Canada) (ASPLOS
2023). Association for Computing Machinery, New York, NY, USA, 935–947. doi:10.1145/3575693.3575720

John Calcote. 2010. Autotools: A Practioner’s Guide to GNU Autoconf, Automake, and Libtool (1st ed.). No Starch Press, USA.
Max Copperman. 1994. Debugging optimized code without being misled. ACM Trans. Program. Lang. Syst. 16, 3 (may 1994),

387–427. doi:10.1145/177492.177517
Giuseppe Antonio Di Luna, Davide Italiano, Luca Massarelli, Sebastian Österlund, Cristiano Giuffrida, and Leonardo

Querzoni. 2021. Who’s debugging the debuggers? exposing debug information bugs in optimized binaries. In Proceedings
of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS ’21). Association for Computing Machinery, New York, NY, USA, 1034–1045. doi:10.1145/3445814.3446695

GDB Developers. 2024. GDB: The GNU Project Debugger. Retrieved 2024-7 from https://sourceware.org/gdb/
Gentoo Authors. 2024. Project:Quality Assurance/Backtraces. Retrieved 2024-8 from https://wiki.gentoo.org/wiki/Project:

Quality_Assurance/Backtraces
John Hennessy. 1982. Symbolic Debugging of Optimized Code. ACM Trans. Program. Lang. Syst. 4, 3 (jul 1982), 323–344.

doi:10.1145/357172.357173
Vedant Kumar. 2020. How to Update Debug Info: A Guide for LLVM Pass Authors. Retrieved 2024-2 from https://llvm.org/

docs/HowToUpdateDebugInfo.html
Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2011. Genprog: A generic method for automatic

software repair. Ieee transactions on software engineering 38, 1 (2011), 54–72.
Yuanbo Li, Shuo Ding, Qirun Zhang, and Davide Italiano. 2020. Debug information validation for optimized code. In

Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2020).
Association for Computing Machinery, New York, NY, USA, 1052–1065. doi:10.1145/3385412.3386020

Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F Bissyandé. 2019. TBar: Revisiting template-based automated
program repair. In Proceedings of the 28th ACM SIGSOFT international symposium on software testing and analysis. 31–42.

LLVM Developers. 2023. Incorrect debug info generated at -O3. Retrieved 2024-8 from https://github.com/llvm/llvm-
project/issues/68898#issuecomment-1760446717

LLVM Project. 2024a. DILocation - LLVM Language Reference. Retrieved 2024-7 from https://llvm.org/docs/LangRef.html#
dilocation

LLVM Project. 2024b. LLVM’s Analysis and Transform Passes. Retrieved 2024-10 from https://llvm.org/docs/Passes.html
Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chandra. 2013. Semfix: Program repair via

semantic analysis. In 2013 35th International Conference on Software Engineering (ICSE). IEEE, 772–781.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 168. Publication date: June 2025.

https://github.com/ecnusse/MetaLoc
https://github.com/ecnusse/MetaLoc
https://doi.org/10.1145/231379.231388
https://doi.org/10.1145/3575693.3575720
https://doi.org/10.1145/177492.177517
https://doi.org/10.1145/3445814.3446695
https://sourceware.org/gdb/
https://wiki.gentoo.org/wiki/Project:Quality_Assurance/Backtraces
https://wiki.gentoo.org/wiki/Project:Quality_Assurance/Backtraces
https://doi.org/10.1145/357172.357173
https://llvm.org/docs/HowToUpdateDebugInfo.html
https://llvm.org/docs/HowToUpdateDebugInfo.html
https://doi.org/10.1145/3385412.3386020
https://github.com/llvm/llvm-project/issues/68898#issuecomment-1760446717
https://github.com/llvm/llvm-project/issues/68898#issuecomment-1760446717
https://llvm.org/docs/LangRef.html#dilocation
https://llvm.org/docs/LangRef.html#dilocation
https://llvm.org/docs/Passes.html

Robustifying Debug Information Updates in LLVM via Control-Flow Conformance Analysis 168:23

Diego Novillo. 2014. SamplePGO - The Power of Profile Guided Optimizations without the Usability Burden. In 2014 LLVM
Compiler Infrastructure in HPC. 22–28. doi:10.1109/LLVM-HPC.2014.8

Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy Vyukov. 2012. AddressSanitizer: A Fast Address
Sanity Checker. In 2012 USENIX Annual Technical Conference (USENIX ATC 12). USENIX Association, Boston, MA, 309–318.
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany

Huang Shan, Liang Jingjing, Su Ting, and Zhang Qirun. 2025. Artifact for MetaLoc – Robustifying Debug Location Updates in
LLVM via Control-Flow Conformance Analysis. doi:10.5281/zenodo.15023927

Yahui Song, Xiang Gao, Wenhua Li, Wei-Ngan Chin, and Abhik Roychoudhury. 2024. ProveNFix: Temporal Property-Guided
Program Repair. Proceedings of the ACM on Software Engineering 1, FSE (2024), 226–248.

J. Ryan Stinnett and Stephen Kell. 2024. Accurate Coverage Metrics for Compiler-Generated Debugging Information. In
Proceedings of the 33rd ACM SIGPLAN International Conference on Compiler Construction (Edinburgh, United Kingdom)
(CC 2024). Association for Computing Machinery, New York, NY, USA, 126–136. doi:10.1145/3640537.3641578

The LLDB Team. 2024. The LLDB Debugger. Retrieved 2024-2 from https://lldb.llvm.org
Rijnard van Tonder and Claire Le Goues. 2018. Static automated program repair for heap properties. In Proceedings of the

40th International Conference on Software Engineering. 151–162.
Vedant, Kumar. 2017. The debugify utility pass. Retrieved 2024-9 from https://llvm.org/docs/HowToUpdateDebugInfo.html#

the-debugify-utility-pass
Quanjun Zhang, Chunrong Fang, Yuxiang Ma, Weisong Sun, and Zhenyu Chen. 2023. A survey of learning-based automated

program repair. ACM Transactions on Software Engineering and Methodology 33, 2 (2023), 1–69.

Received 2024-11-15; accepted 2025-03-06

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 168. Publication date: June 2025.

https://doi.org/10.1109/LLVM-HPC.2014.8
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://doi.org/10.5281/zenodo.15023927
https://doi.org/10.1145/3640537.3641578
https://lldb.llvm.org
https://llvm.org/docs/HowToUpdateDebugInfo.html#the-debugify-utility-pass
https://llvm.org/docs/HowToUpdateDebugInfo.html#the-debugify-utility-pass

	Abstract
	1 Introduction
	2 Background and Motivating Example
	2.1 Debug Location and Its Updates in LLVM
	2.2 A Real Debug Location Update Error in LLVM

	3 Approach
	3.1 Identifying Update Destinations and Sources
	3.2 Control-Flow Conformance Analysis
	3.3 Robustifying Debug Location Updates

	4 Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 RQ1: Accuracy of the Constructed Debug Location Updates
	5.3 RQ2: Finding and Fixing Previously Unknown Update Errors
	5.4 Samples of Debug Location Update Errors Found and Fixed by MetaLoc
	5.5 Discussions

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

